

JOB NO.: TCS00694/13

AGREEMENT NO. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (NO.59) – JUNE 2018

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

Date	Reference No.	Prepared By	Certified By
16 July 2018	TCS00694/13/600/R1659v2	Anh	Am

Nicola Hon (Environmental Consultant) Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks
1	11 July 2018	First Submission
2	16 July 2018	Amended according to the IEC's comment on 11 and 14 July 2018

By Email & Post

Our ref: 7076192/L23253/AB/AW/MCC/rw

16 July 2018

AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T.

Attention: Mr Simon LEUNG

Dear Sir

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Independent Environmental Checker – Investigation Monthly EM&A Report (No. 59) – June 2018

With reference to the Monthly EM&A Report No. 59 for June 2018 (Version 2) certified by the ET Leader, please be noted that we have no adverse comments on the captioned submission. We herewith verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-404/2011/D.

Thank you for your attention and please do not hesitate to contact the undersigned on tel. 3995-8120 or by email to antony.wong@smec.com; or our Mr Arthur CHIU on tel. 3995-8144 or by email to arthur.chiu@smec.com.

Yours faithfully

Anton NG

Independent Environmental Checker

сс	CEDD/BCP ArchSD AECOM Ronald Lu CW DHK CCKJV KRSJV Leighton Siemens	Mr LU Pei Yu / Mr William CHEUNG Mr William WL CHENG Mr Pat LAM / Mr Perry YAM Mr Peter YAM / Mr Justin CHEUNG Mr Daniel HO Mr Daniel ALTIER Mr Vincent CHAN Mr Matthew TSANG Mr Ray HO Mr Patrick LEUNG	by fax: 3547 1659 by fax: 2804 6805 by email by email by email by email by email by email by email by email by email
	-		by email by email

SMEC ASIA LIMITED 27/F Ford Glory Plaza 37-39 Wing Hong Street Cheung Sha Wan, Kowloon, Hong Kong T +852 3995 8100 F +852 3995 8101 E hongkong@smec.com www.smec.com

EXECUTIVE SUMMARY

ES01 This is the **59th** monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from **1 to 30 June 2018** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

- ES02 To facilitate the project management and implementation, Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project is divided to seven CEDD contracts including Contract 2 (CV/2012/08), Contract 3 (CV/2012/09), Contract 4 (NE/2014/02), Contract 5 (CV/2013/03), Contract 6 (CV/2013/08) and Contract 7 (NE/2014/03) and an ArshSD contract (Contract SS C505).
- ES03 In the Reporting Period, the major construction works under Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project included Contract 2, Contract 3, Contract 4, Contract 6, Contract 7 and Contract SS C505. Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

Environmental	Environmental Monitoring	Reporting Period			
Aspect	Parameters / Inspection	Number of Monitoring Locations to undertake	Total Occasions		
Air Quality	1-hour TSP	9	150		
Air Quality	24-hour TSP	9	54		
Construction Noise	L _{eq(30min)} Daytime	10	45		
		WM1 & WM1-C	13 Scheduled & 0 extra		
	Water in-situ measurement and/or sampling	WM2A(a) & WM2A-Cx	13 Scheduled & 8 extra		
Water Quality		WM2B & WM2B-C	13 Scheduled & 0 extra (*)		
		WM3x &WM3-C	13 Scheduled & 3 extra		
		WM4, WM4-CA &WM4-CB	13 Scheduled & 1 extra		
Ecology	Woodland compensationi) General Health condition of planted speciesii) Survival of planted species	9 Quadrats and transect	0		
	· · ·	Contract 2	5		
		Contract 3	4		
	IEC, ET, the Contractor and	Contract 4	5		
Inspection /	RE joint site Environmental	Contract 6	4		
Audit	Inspection and Auditing	Contract 7	5		
		Contract SS C505 (#)	4		

Remark: (#) IEC only joined one (1) event of site inspection for Contract SS C505.

(*) In the whole Reporting Period, water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm)

ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE

ES04 In the Reporting Period, no air quality and construction noise exceedance and valid noise complaint was recorded. For water quality monitoring, a total of thirty-seven (37) Action/Limit Level exceedances were recorded under the Project. The summary of exceedance in the Reporting Period is shown below.

Environmental	Monitoring	Action	I imit	Event & Action			
Environmental Aspect	0	Level		NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
Air Quality	1-hour TSP	0	0	0			
7 III Quality	24-hour TSP	0	0	0			

Environmentel	vironmontal Monitoring		n I :m:+	Event & Action			
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
Construction Noise	L _{eq(30min)} Daytime	0	0	0			
	DO	0	0	0	-		
	Turbidity	0	19	19	related		The Contractor should fully
Water Quality	SS	1	17	18	6 to 15 June Project relate - Exceedances	2018 were not ed s at WM2A(a) on 6 June 2018 are	implement water quality mitigation measure.

ES05 Investigation results revealed that the Contractor had properly implemented water quality mitigation measures such as well-maintained the wastewater treatment facility and covered the expose area with impervious sheet. It was concluded that all exceedances recorded at WM3x and WM4 and exceedances recorded at WM2A(a) during 6 to 15 June 2018 were related to the rainstorm or external inflow of muddy water and unlikely caused by the works under the Project. Besides, the investigation report for exceedances at WM2A(a) on 23, 25 and 26 June 2018 is still under review by IEC and the investigation result will be presented in next Monthly EM&A Report. The Contractor was reminded to fully implement the water quality mitigation measure throughout the construction phase as far as practicable.

ENVIRONMENTAL COMPLAINT

ES06 In this Reporting Period, no environmental complaints were received under the EM&A programme.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES07 No environmental summons and prosecutions were recorded in the Reporting Period.

REPORTING CHANGE

ES08 No reporting changes were made in the Reporting Period.

SITE INSPECTION

- ES09 In this Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 2* has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 22 and 29 June 2018. No non-compliance was noted during the site inspection.
- ES10 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 3* has been carried out by the RE, IEC, ET and the Contractor on 7, 14, 20 and 28 June 2018. No non-compliance was noted during the site inspection.
- ES11 In the Reporting Period, joint site inspection to evaluate the site environmental performance at Contract 4 has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 22 and 25 June 2018. No non-compliance was noted.
- ES12 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 6* has been carried out by the RE, IEC, ET and the Contractor on 7, 14, 21 and 28 June 2018. No non-compliance was noted during the site inspection.
- ES13 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 19 and 29 June 2018. No non-compliance was noted during the site inspection.

ES14 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract SS C505* has been carried out by the RE, ET and the Contractor on **8**, **13**, **20 and 27 June 2018** in which IEC joined the site inspection on **27 June 2018**. No non-compliance was noted during the site inspection.

FUTURE KEY ISSUES

- ES15 During rainy season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- ES16 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- ES17 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- ES18 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.

Table of Contents

1	INTRODUCTION	1
	1.1 PROJECT BACKGROUND	1
	1.2 REPORT STRUCTURE	1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	3
	2.1 CONSTRUCTION CONTRACT PACKAGING	3
	2.2 PROJECT ORGANIZATION	5
	2.3 CONCURRENT PROJECTS	7
	2.4 CONSTRUCTION PROGRESS2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS	7 9
_		
3	SUMMARY OF IMPACT MONITORING REQUIREMENTS	14
	3.1 GENERAL3.2 MONITORING PARAMETERS	14 14
	3.3 MONITORING LOCATIONS	14
	3.4 MONITORING FREQUENCY AND PERIOD	16
	3.5 MONITORING EQUIPMENT	17
	3.6 MONITORING METHODOLOGY	19
	3.7 EQUIPMENT CALIBRATION	21
	3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS	21
	3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL	22
4	AIR QUALITY MONITORING	23
	4.1 GENERAL	23
	4.2 AIR QUALITY MONITORING RESULTS	23
5	CONSTRUCTION NOISE MONITORING	26
	5.1 GENERAL	26
	5.2 NOISE MONITORING RESULTS	26
6	WATER QUALITY MONITORING	27
	6.1 GENERAL	27
	6.2 RESULTS OF WATER QUALITY MONITORING	27
7	ECOLOGY MONITORING	32
	7.1 GENERAL	32
8	WASTE MANAGEMENT	33
	8.1 GENERAL WASTE MANAGEMENT	33
	8.2 RECORDS OF WASTE QUANTITIES	33
9	SITE INSPECTION	34
	9.1 REQUIREMENTS	34
	9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	34
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	38
	10.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTIONS	38
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	40
	11.1 GENERAL REQUIREMENTS	40
	11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	40
	11.3 KEY ISSUES FOR THE COMING MONTH	42
12	CONCLUSIONS AND RECOMMENDATIONS	43
	12.1 CONCLUSIONS	43
	12.2 RECOMMENDATIONS	43

LIST OF TABLES

TABLE 2-1	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE CONTRACTS
TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	IMPACT MONITORING STATIONS - AIR QUALITY
TABLE 3-3	IMPACT MONITORING STATIONS - CONSTRUCTION NOISE
TABLE 3-4	IMPACT MONITORING STATIONS - WATER QUALITY
TABLE 3-5	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-6	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-7	WATER QUALITY MONITORING EQUIPMENT
TABLE 3-8	ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING
TABLE 3-9	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-10	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM1C
TABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM2
TABLE 4-3	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM3
TABLE 4-4	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM4B
TABLE 4-5	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM5A
TABLE 4-6	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM6
TABLE 4-7	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM7B
TABLE 4-8	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM8
TABLE 4-9	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM9B
TABLE 5-1	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-2	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 6-1	WATER QUALITY MONITORING RESULTS ASSOCIATED OF CONTRACTS 2 AND 3
TABLE 6-2	WATER QUALITY MONITORING RESULTS ASSOCIATED OF CONTRACTS 6 AND SS C505
TABLE 6-3	WATER QUALITY MONITORING RESULTS ASSOCIATED ONLY CONTRACT 6
TABLE 6-4	WATER QUALITY MONITORING RESULTS ASSOCIATED CONTRACTS 2 AND 6
TABLE 6-5	ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE RECORDED
TABLE 6-6	SUMMARY OF WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
TABLE 8-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS FOR THE PROJECT
TABLE 8-2	SUMMARY OF QUANTITIES OF C&D WASTES FOR THE PROJECT
TABLE 9-1	SITE OBSERVATIONS FOR CONTRACT 2
TABLE 9-2	SITE OBSERVATIONS FOR CONTRACT 3
TABLE 9-3	SITE OBSERVATIONS FOR CONTRACT 4
TABLE 9-4	SITE OBSERVATIONS FOR CONTRACT 6
TABLE 9-5	SITE OBSERVATIONS FOR CONTRACT SS C505
TABLE 9-6	SITE OBSERVATIONS FOR CONTRACT 7
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTIONS
TABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES

LIST OF APPENDICES

APPENDIX A	LAYOUT PLAN OF THE PROJECT
APPENDIX B	ORGANIZATION CHART
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
APPENDIX D	DESIGNATED MONITORING LOCATIONS AS RECOMMENDED IN THE APPROVED EM&A MANUAL
APPENDIX E	MONITORING LOCATIONS FOR IMPACT MONITORING
Appendix F	CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
APPENDIX G	EVENT AND ACTION PLAN
APPENDIX H	IMPACT MONITORING SCHEDULE
APPENDIX I	DATABASE OF MONITORING RESULT
APPENDIX J	GRAPHICAL PLOTS FOR MONITORING RESULT
APPENDIX K	METEOROLOGICAL DATA
APPENDIX L	WASTE FLOW TABLE
APPENDIX M	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES
APPENDIX N	INVESTIGATION REPORT FOR EXCEEDANCE
APPENDIX O	INVESTIGATION REPORT FOR COMPLAINT (NOT USED)

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department is the Project Proponent and the Permit Holder of Agreement No. CE 45/2008 (CE) Liantang / Heung Yuen Wai Boundary Control Point and Associated Works, which is a Designated Project to be implemented under Environmental Permit number EP-404/2011/D granted on 20 January 2017.
- 1.1.2 The Project consists of two main components: Construction of a Boundary Control Point (hereinafter referred as "BCP"); and Construction of a connecting road alignment. Layout plan of the Project is shown in *Appendix A*.
- 1.1.3 The proposed BCP is located at the boundary with Shenzhen near the existing Chuk Yuen Village, comprising a main passenger building with passenger and cargo processing facilities and the associated customs, transport and ancillary facilities. The connecting road alignment consists of six main sections:
 - 1) Lin Ma Hang to Frontier Closed Area (FCA) Boundary this section comprises at-grade and viaducts and includes the improvement works at Lin Ma Hang Road;
 - Ping Yeung to Wo Keng Shan this section stretches from the Frontier Closed Area Boundary to the tunnel portal at Cheung Shan and comprises at-grade and viaducts including an interchange at Ping Yeung;
 - 3) North Tunnel this section comprises the tunnel segment at Cheung Shan and includes a ventilation building at the portals on either end of the tunnel;
 - 4) Sha Tau Kok Road this section stretches from the tunnel portal at Wo Keng Shan to the tunnel portal south of Loi Tung and comprises at-grade and viaducts including an interchange at Sha Tau Kok and an administration building;
 - 5) South Tunnel this section comprises a tunnel segment that stretches from Loi Tung to Fanling and includes a ventilation building at the portals on either end of the tunnel as well as a ventilation building in the middle of the tunnel near Lau Shui Heung;
 - 6) Fanling this section comprises the at-grade, viaducts and interchange connection to the existing Fanling Highway.
- 1.1.4 Action-United Environmental Services & Consulting has been commissioned as an Independent ET to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. As part of the EM&A program, the baseline monitoring has carried out between **13 June 2013** and **12 July 2013** for all parameters including air quality, noise and water quality before construction work commencement. The Baseline Monitoring Report summarized the key findings and the rationale behind determining a set of Action and Limit Levels (A/L Levels) from the baseline data. Also, the Project baseline monitoring report which verified by the IEC has been submitted to EPD on **16 July 2013** for endorsement. The major construction works of the Project was commenced on **16 August 2013** in accordance with the EP Section 5.3 stipulation.
- 1.1.5 This is **59th** monthly EM&A report presenting the monitoring results and inspection findings for reporting period from **1** to **30 June 2018**.

1.2 REPORT STRUCTURE

- 1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-
 - Section 1 Introduction
 - Section 2 Project Organization and Construction Progress
 - Section 3 Summary of Impact Monitoring Requirements
 - Section 4 Air Quality Monitoring
 - Section 5 Construction Noise Monitoring
 - Section 6 Water Quality Monitoring

Section 7	Ecology Monitoring
Section 8	Waste Management
Section 9	Site Inspections
Section 10	Environmental Complaints and Non-Compliance
Section 11	Implementation Status of Mitigation Measures
Section 12	Conclusions and Recommendations

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 CONSTRUCTION CONTRACT PACKAGING

- 2.1.1 To facilitate the project management and implementation, the Project would be divided by the following contracts:
 - Contract 2 (CV/2012/08)
 - Contract 3 (CV/2012/09)
 - Contract 4 (NE/2014/02)
 - Contract 5 (CV/2013/03)
 - Contract 6 (CV/2013/08)
 - Contract 7 (NE/2014/03)
 - ArchSD Contract No. SS C505
- 2.1.2 The details of each contracts is summarized below and the delineation of each contracts is shown in *Appendix A*.

Contract 2 (CV/2012/08)

- 2.1.3 Contract 2 has awarded in December 2013 and construction work was commenced on 19 May 2014. Major Scope of Work of the Contract 2 is listed below:
 - construction of an approximately 5.2km long dual two-lane connecting road (with about 0.4km of at-grade road and 4.8km of tunnel) connecting the Fanling Interchange with the proposed Sha Tau Kok Interchange;
 - construction of a ventilation adit tunnel and the mid-ventilation building;
 - construction of the north and south portal buildings of the Lung Shan Tunnel and their associated slope works;
 - provision and installation of ventilation system, E&M works and building services works for Lung Shan tunnel and Cheung Shan tunnel and their portal buildings;
 - construction of Tunnel Administration Building adjacent to Wo Keng Shan Road and the associated E&M and building services works; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 3 (CV/2012/09)

- 2.1.4 Contract 3 was awarded in July 2013 and construction work was commenced on 5 November 2013. Major Scope of Work of the Contract 3 is listed below:
 - construction of four link roads connecting the existing Fanling Highway and the south portal of the Lung Shan Tunnel;
 - realignment of the existing Tai Wo Service Road West and Tai Wo Service Road East;
 - widening of the existing Fanling Highway (HyD's entrustment works);
 - demolishing existing Kiu Tau vehicular bridge and Kiu Tau footbridge and reconstruction of the existing Kiu Tau Footbridge (HyD's entrustment works); and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 4 (NE/2014/02)

- 2.1.5 Contract 4 has awarded in mid-April 2016 and construction work was commenced on 2 May 2017. The scope of work of the Contract 4 includes:
 - design, supply, delivery, installation, testing and commissioning of a traffic control and surveillance system for the connecting road linking up the Liantang / Heung Yuen Wai Boundary Control Point and the existing Fanling Highway.

Contract 5 (CV/2013/03)

- 2.1.6 Contract 5 has awarded in April 2013 and construction work was commenced in August 2013. Major Scope of Work of the Contract 5 is listed below:
 - site formation of about 23 hectares of land for the development of the BCP;
 - construction of an approximately 1.6 km long perimeter road at the BCP including a 175m long depressed road;
 - associated diversion/modification works at existing local roads and junctions including Lin Ma Hang Road;
 - construction of pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provision of resite area with supporting infrastructure for reprovisioning of the affected village houses; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 6 (CV/2013/08)

- 2.1.7 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. Major Scope of Work of the Contract 6 would be included below:
 - construction of an approximately 4.6km long dual two-lane connecting road (with about 0.6km of at-grade road, 3.3km of viaduct and 0.7km of tunnel) connecting the BCP with the proposed Sha Tau Kok Road Interchange and the associated ventilation buildings;
 - associated diversion/modification works at access roads to the resite of Chuk Yuen Village;
 - provision of sewage collection, treatment and disposal facilities for the BCP and the resite of Chuk Yuen Village;
 - construction of a pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provisioning of the affected facilities including Wo Keng Shan Road garden; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 7 (NE/2014/03)

- 2.1.8 Contract 7 has awarded in December 2015 and the construction works of Contract 7 was commenced on 15 February 2016. Major Scope of Work of the Contract 7 would be included below:
 - construction of the Hong Kong Special Administrative Region (HKSAR) portion of four vehicular bridge
 - construction of one pedestrian bridge crossing Shenzhen (SZ) River (cross boundary bridges)

ArchSD Contract No. SS C505

- 2.1.9 SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. Major Scope of Work of the SS C505 would be included below:
 - passenger-related facilities including processing kiosks and examination facilities for private cars and coaches, passenger clearance building and halls, the interior fitting works for the pedestrian bridge crossing Shenzhen River, etc.;
 - cargo processing facilities including kiosks for clearance of goods vehicles, customs inspection platforms, X-ray building, etc.;
 - accommodation for the facilities inside of the Government departments providing services in connection with the BCP;
 - transport-related facilities inside the BCP including road networks, public transport interchange, transport drop-off and pick-up areas, vehicle holding areas and associated road furniture etc;
 - a public carpark; and

• other ancillary facilities such as sewerage and drainage, building services provisions and electronic systems, associated environmental mitigation measure and landscape works.

2.2 **PROJECT ORGANIZATION**

2.2.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

Civil Engineering and Development Department (CEDD)

2.2.2 CEDD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by CEDD to audit the results of the EM&A works carried out by the ET.

Architectural Services Department (ArchSD)

2.2.3 ArchSD acts as the works agent for Development Bureau (DEVB), for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities.

Environmental Protection Department (EPD)

2.2.4 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

Ronald Lu & Partners (Hong Kong) Ltd (The Architect)

- 2.2.5 Ronald Lu & Partners (Hong Kong) Ltd is appointed by ArchSD as an Architect for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) BCP Buildings and Associated Facilities. It responsible for overseeing the construction works of Contract SS C505 and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Architect with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors' and ET's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulation of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

Engineer or Engineers Representative (ER)

- 2.2.6 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors's, ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance

- Adhere to the procedures for carrying out complaint investigation
- Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulaiton of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

The Contractor(s)

- 2.2.7 There will be one contractor for each individual works contract. Once the contractors are appointed, EPD, ET and IEC will be notified the details of the contractor.
- 2.2.8 The Contractor for Contracts under CEDD should report to the ER. For ArchSD Contract, the Contractor should report to the Architect or Architect's Representative (AR). The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Employ an Environmental Team (ET) to undertake monitoring, laboratory analysis and reporting of EM &A Facilitate ET's monitoring and site inspection activities
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.2.9 Once the ET is appointed, the EPD, CEDD, ER, Architect and IEC will be notified the details of the ET.
- 2.2.10 The ET shall not be in any way an associated body of the Contractor(s), and shall be employed by the Project Proponent/Contractor to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitably qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. The ET shall report to the Project Proponent and the duties shall include:
 - Monitor and audit various environmental parameters as required in this EM&A Manual
 - Analyse the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications
 - Audit environmental conditions on site
 - Report on the environmental monitoring and audit results to EPD, the ER, the Architect, the IEC and Contractor or their delegated representatives
 - Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
 - Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
 - Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
 - Adhere to the procedures for carrying out complaint investigation

• Liaison with the client departments, Engineer/Engineer's Representative, ET, IEC and the Contractor(s) of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

Independent Environmental Checker (IEC)

- 2.2.11 One IEC will be employed for this Project. Once the IEC is appointed, EPD, ER, the Architect and ET will be notified the details of the IEC.
- 2.2.12 The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 10 years' experience in EM&A and have relevant professional qualifications. The appointment of IEC should be subject to the approval of EPD. The IEC should:
 - Provide proactive advice to the ER and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Verify the log-book(s) mentioned in Condition 2.2 of the EP, notify the Director by fax, within one working day of receipt of notification from the ET Leader of each and every occurrence, change of circumstances or non-compliance with the EIA Report and/or the EP, which might affect the monitoring or control of adverse environmental impacts from the Project
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the ER and Project Proponent on a monthly basis
 - Liaison with the client departments, Engineer/Engineer's Representative, the Architect, ET, IEC and the Contractor of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

2.3 CONCURRENT PROJECTS

- 2.3.1 The concurrent construction works that may be carried out include, but not limited to, the following:
 - (a) Regulation of Shenzhen River Stage IV;
 - (b) Widening of Fanling Highway Tai Hang to Wo Hop Shek Interchange Contract No. HY/2012/06;
 - (c) Construction of BCP facilities in Shenzhen.

2.4 CONSTRUCTION PROGRESS

2.4.1 In the Reporting Period, the major construction activity conducted under the Project is located in Contracts 2, 3, 6, 7 and SS C505 and they are summarized in below. Moreover, 3-month rolling construction program for all the current contracts is enclosed in *Appendix C*.

Contract 2 (CV/2012/08)

2.4.2 The contract commenced in May 2014. In this Reporting Period, construction activities conducted are listed below:

are fisted below	•
Mid-Vent Portal	 Cavern internal structure and tunnel E&M activities Construction of C&C structure and permanent drainage Structure connecting adit and ventilation building Construction of fence wall and portal backfilling Ventilation building fitting out and E&M installation
North Portal	 Dismantling of TBM Installation of VE panel inside the tunnel Construction of cross passage and internal structure Tunnel backfilling and E&M installation North ventilation building structure and internal structure Construction of retaining wall and permanent drainage Site formation and construction of slip road Construction of connecting structure between the tunnel and the NVB Construction of temporary utility bridge across the mid-platform
South Portal	 Installation of E&M and VE panel inside the tunnel Construction of tunnel internal structure and cross passage Portal backfilling activities and construction of slip road SVB external wall finishing and fit out E&M installation and T&C for ventilation fan inside the SVB Soft landscaping work
Admin Building	 External works finishing Internal fit out, permanent drainage and E&M installation. Soft landscaping work.

Contract 3 (CV/2012/09)

- 2.4.3 The Contract commenced in November 2013. In this Reporting Period, construction activities conducted are listed below:
 - Cable Detection and Trial Trenches
 - Remaining Works on new Kiu Tau Footbridge
 - Noise Barrier Construction
 - Road pavement works
 - Water main laying works (on Grade and on bridge deck)
 - Installation of Noise barrier steel column & panel, and sign gantry
 - Parapet Installation on bridge deck
 - Road Drainage Work
 - Construction of Profile Barrier & Planter Wall on Bridge Deck
 - Stressing of External Tendon
 - Bitumen paving on bridge deck
 - Installation of deck cell inside the bridge deck
 - Installation of movement joint on the bridge
 - Construction of Retaining Wall
 - Landscaping works

Contract 4 (NE/2014/02)

- 2.4.4 The Contract was awarded in mid-April 2016 and the construction work was commenced on 2 May 2017. In this Reporting Period, construction activities conducted are listed below:
 - E&M installation at Admin Building
 - E&M installation at Ventilation Building
 - E&M installation at OHVD in tunnel
 - High mast erection

• Sign fabrication

Contract 5 (CV/2013/03)

2.4.5 The construction works under Contract 5 was substantially completed on 31 August 2016.

Contract 6 (CV/2013/08)

- 2.4.6 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. In this Reporting Period, construction activities conducted are listed below:
 - Bridge construction
 - Tunneling Works
 - Sewage Treatment Plant Construction
 - Tunnel Ventilation Building Construction
 - Slip Road/At-grade Road/Periphery Road Construction

Contract 7 (NE/2014/03)

- 2.4.7 Contract 7 has awarded in December 2015 and construction work was commenced on 15 February 2016. In this Reporting Period, construction activities conducted are listed below:
 - Abutment and deck construction at Bridge E
 - Profile barrier construction at Bridges A, B, D & E
 - Installation of Façade at Bridge C
 - Installation of BMU at roof at Bridge C
 - Waterproofing works at roof of Bridge C
 - Drainage and watermains at perimeter road
 - Bitumen pavement perimeter road

Contract SS C505

- 2.4.8 Contract SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. In this Reporting Period, construction activities conducted are listed below:
 - Building no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 41 constructions
 - Constructions of Steel Canopies (Building no. 32, 33, 34 and 35)
 - Constructions of Master Water Meter Room 1, 2 and 3 (Building no. 42, 43, 44)
 - Tower crane operation
 - Bridge 1 5 construction works including retaining wall, road and finishes works
 - Underground drainage works, Road Works, CLP Cable laying and Landscaping
 - Formwork and falsework for PTB's slab and internal wall construction
 - Construction PTB M/F, 1/F, 2/F and Roof flat slab
 - Construction PTB non-structural wall, Underground Drainage and Utilities, Fence Wall, On Grade Ground Slab and Paving
 - PTB Southern Entrance Construction & Curtain Wall Installation
 - Backfilling works
 - PTB Major Plant Rooms ABWF & MEP Installation, Lift and Escalator Installation by NSC
 - Integrated ABWF & MEP Works in PTB, Building no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 36 and 41
 - Elevated Walkway E1, E2, E3 and E4 construction
 - Tower Crane Dismantling Works

2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

- 2.5.1 In according to the EP, the required documents have submitted to EPD which listed in below:
 - Project Layout Plans of Contracts 2, 3, 4, 5, 6, 7 and SS C505
 - Landscape Plan
 - Topsoil Management Plan
 - Environmental Monitoring and Audit Programme
 - Baseline Monitoring Report (TCS00690/13/600/R0030v3) for the Project

- Waste Management Plan of the Contracts 2, 3, 4, 5, 6, 7 and SS C505
- Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR) for Po Kat Tsai, Loi Tung and the workshops in Fanling
- Vegetation Survey Report
- Woodland Compensation Plan
- Habitat Creation Management Plan
- Wetland Compensation Plan
- 2.5.2 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project of each contracts are presented in *Table 2-1*.

			License/	Permit Status			
Item	Description	Ref. no.		Effective Date	Expiry Date		
	Contract 2						
1	Air pollution Control (Construction Dust) Regulation	Ref No.: 368864		31 Dec 2013	Till Contract ends		
2	Chemical Waste Producer Registration	<i>North Portal</i> Waste Producers Number: No.5213-652-D2523-01		25 Mar 2014	Till Contract ends		
		<i>Mid-Vent Portal</i> Waste Producers N No.5213-634-D252		25 Mar 2014	Till Contract ends		
		South Portal Waste Producers Number: No.5213-634-D2526-01		9 Apr 2014	Till Contract ends		
3	3Water Pollution Control Ordinance -No.WT00018374-2014 (South Portal)		2014	3 Mar 2014	28 Feb 2019		
	Discharge License	No. WT00023063-2015 (North Portal)		18 Dec 2015	31 Mar 2019		
		No.: W5/1I392		28 Mar 2014	31 Mar 2019		
		(Admin Building)					
		No.: WT00025594-2016 (Mid-Vent Portal)		7 Oct 2016	31 Mar 2019		
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7019105		8 Jan 2014	Till Contract ends		
5	Construction Noise	GW-RN0839-17	North	25-Dec-2017	17-Jun-2018		
	Permit	GW-RN0211-18	Portal	10-May-2018	09-Nov-2018		
		GW-RN0212-18		10-May-2018	09-Nov-2018		
		GW-RN0307-18		18-Jun-2018	17-Dec-2018		
		GW-RN0047-18	Mid	05-Feb-2018	01-Aug-2018		
		GW-RN0049-18	Vent	05-Feb-2017	31-Jul-2018		
		GW-RN0238-17	South	01-Jun-2018	30-Nov-2018		
		GW-RN0110-18	Portal	22-Mar-2018	21-Sep-2018		
		GW-RN0788-17		06-Dec-2017	05-Jun-2018		

		License/Permit Status			
Item	Description	Ref. no.		Effective Date	Expiry Date
		GW-RN0176-18		30-Apr-2018	27-Oct-2018
		GW-RN0253-18		06-Jun-2018	05-Dec-2018
		GW-RN0142-18	Admin Bldg	5-Apr-2018	27-Sep-2018
		GW-RN0140-18	Cheung Shan Tunnel	3-Apr-2018	22-Sep-2018
6	Specified Process License (Mortar Plant Operation)	L-3-251(1)		12 Apr 2016	11 Apr 2021
		Contra	et 3	1	
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 362101		17 Jul 2013	Till Contract ends
2	Chemical Waste Producer Registration	Waste Producers Number: No.:5113-634-C3817-01		7 Oct 2013	Till Contract ends
3	Water Pollution Control Ordinance - Discharge License	No.:WT00016832 – 2013		28 Aug 13	31 Aug 2018
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017914		2 Aug 13	Till Contract ends
5	Construction Noise	GW-RN0785-17		19 Dec 2017	16 Jun 2018
	Permit	GW-RN0786-17		24 Dec 2017	18 Jun 2018
		GW-RN0801-17		22 Dec 2017	21 Jun 2018
		GW-RN0863-17		17 Jan 2018	5 Jul 2018
		GW-RN0043-18		25 Feb 2018	24 Aug 2018
		GW-RN0044-18		22 Feb 2018	21 Aug 2018
		GW-RN0102-18		14 Mar 2018	31 Aug 2018
		GW-RN0123-18		28 Mar 2018	5 Sep 2018
		GW-RN0259-18		19 Jun 2018	17 Dec 2018
		GW-RN0305-18		22 Jun 2018	17 Dec 2018
		Contra	et 5		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 359338		13 May 2013	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-642-S3735-01		8 Jun 2013	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: W5/1G44/1		8 Jun 13	30 Jun 2018

		License/F	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017351	29 Apr 13	Till the end of Contract
	1	Contract 6	L	
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390614	29 Jun 2015	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-652-C3969-01	31 Aug 2015	Till the end of Contract
3	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022707	9 Jul 2015	Till the end of Contract
4	Water Pollution Control Ordinance -	No.:WT00024574-2016	31 May 2016	31 May 2021
	Discharge License	No.:WT00024576-2016	31 May 2016	31 May 2021
		No.:WT00024742-2016	14 June 2016	30 June 2021
		No.:WT00024746-2016	14 June 2016	30 June 2021
5	Construction Noise	GW-RW0668-17	16 Jan 2018	15 Jul 2018
	Permit	GW-RW0086-18	1 Mar 2018	31 Aug 2018
		GW-RW0121-18	30 Apr 2018	29 Oct 2018
	A ' 11	Contract SS C505	12 1 1 2015	
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390974	13 Jul 2015	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producer No.: 5213-642-L1048-07	16 Sep 2015	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024865-2016	8 Jul 2016	30 Nov 2020
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022831	23 Jul 2015	Till the end of Contract
5	Construction Noise	GW-RN0114-18	5 Apr 2018	4 Oct 2018
	Permit	GW-RN0198-18	8 May 2018	7 Nov 2018
		Contract 7		
1	Air pollution Control (Construction Dust)	Ref. No: 397015	21 Dec 2015	Till the end of Contract

License/Permit Stat			Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
	Regulation			
2	Chemical Waste Producer Registration	Waste Producer No.: 5214-641-K3202-01	24 Mar 2016	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024422-2016	10 May 2016	31 May 2021
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024129	21 Jan 2016	Till the end of Contract
5	Construction Noise Permit	GW-RN0206-18	8 May 2018	4 Nov 2018
	•	Contract 4		
1	Air pollution Control (Construction Dust) Regulation	Ref. No. 405353	22 July 2016	Till the end of Contract
2	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024973	13 May 2016	Till the end of Contract

3 SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Water quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	 1-hour TSP by Real-Time Portable Dust Meter; and
	 24-hour TSP by High Volume Air Sampler.
	• L _{eq(30min)} in normal working days (Monday to Saturday) 07:00-19:00
	except public holiday; and
Noise	• 3 sets of consecutive L _{eq(5min)} on restricted hours i.e. 19:00 to 07:00
INDISC	next day, and whole day of public holiday or Sunday
	• Supplementary information for data auditing, statistical results such
	as L_{10} and L_{90} shall also be obtained for reference.
	In-situ Measurements
	 Dissolved Oxygen Concentration (mg/L);
	 Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Water Quality	• pH unit;
	• Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	Suspended Solids (mg/L)

3.3 MONITORING LOCATIONS

3.3.1 The designated monitoring locations as recommended in the *EM&A Manual* are shown in *Appendix D*. As the access to some of the designated monitoring locations was questionable due to safety reason or denied by the landlords, alternative locations therefore have had proposed. The latest alternative monitoring locations has been updated in the revised EM&A Programme (Rev.7) which approved by EPD on 7 April 2017. Besides, in view of Location AM1b was demolished and returned to the landlord on 27 April 2018, alterative location AM1c was proposed by ET. The proposal for alterative location AM1c which verified by IEC 5 June 2018 has been submitted to EPD for approval on 6 June 2018 and it is under review by EPD. *Table 3-2, Table 3-3* and *Table 3-4* listed the air quality, construction noise and water quality monitoring locations for the Project and a map showing these monitoring stations is presented in *Appendix E*.

Table 3-2	Impact Monitoring Stations - Air Quality
-----------	--

Station ID	Station ID Description		Related to the Work Contract
AM1b^	Open area at Tsung Yuen Ha Village	BCP	SS C505 Contract 7

Station ID	Description	Works Area	Related to the Work Contract
AM1c(*)	Open area of Tsung Yuen Ha Village	BCP	SS C505
	No. 63		Contract 7
AM2	Village House near Lin Ma Hang Road	LMH to Frontier	Contract 6
		Closed Area	
AM3	Ta Kwu Ling Fire Service Station of Ta	LMH to Frontier	Contract 6
	Kwu Ling Village.	Closed Area	
AM4b^	House no. 10B1 Nga Yiu Ha Village	LMH to Frontier	Contract 6
		Closed Area	
AM5a^	Ping Yeung Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM6	Wo Keng Shan Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM7b [@]	Loi Tung Village House	Sha Tau Kok	Contract 2
		Road	Contract 6
AM8	Po Kat Tsai Village No. 4	Po Kat Tsai	Contract 2
AM9b#	Nam Wa Po Village House No. 80	Fanling	Contract 3

Proposal for the change of air quality monitoring location from AM9a to AM9b was submitted to EPD on 4 Nov 2013 after verified by the IEC and it was approved by EPD (EPD's ref.: (15) in EP 2/N7/A/52 Pt.10 dated 8 Nov 2013).

@ Proposal for the change of air quality monitoring location from AM7a to AM7b was submitted to EPD on 4 June 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (7) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

[^] Proposal for change of air quality monitoring locations was enclosed in the updated EM&A Programme which approval by EPD on 29 Mar 2016. Besides, Location AM1b was temporary suspended (24-hour TSP monitoring) since 27 April 2018 as the rented land was demolished and returned to the landlord. * Proposal for alterative location AM1c which verified by the IEC on 5 June 2018 was submitted to EPD on

6 June 2018 and it is under review by EPD.

Station ID	Description	Works Area	Related to the Work Contract	
NM1	Tsung Yuen Ha Village House No. 63	ВСР	SS C505 Contract 7	
NM2a#	Village House near Lin Ma Hang Road	Lin Ma Hang to Frontier Closed Area	Contract 6	
NM3	Ping Yeung Village House (facade facing northeast)	Ping Yeung to Wo Keng Shan	Contract 6	
NM4	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6	
NM5	Village House, Loi Tung	Sha Tau Kok Road	Contract 2, Contract 6	
NM6	Tai Tong Wu Village House 2	Sha Tau Kok Road	Contract 2, Contract 6	
NM7	Po Kat Tsai Village	Po Kat Tsai	Contract 2	
NM8	Village House, Tong Hang	Fanling	Contract 2 Contract 3	
NM9	Village House, Kiu Tau Village	Fanling	Contract 3	
NM10	Nam Wa Po Village House No. 80	Fanling	Contract 3	

 Table 3-3
 Impact Monitoring Stations - Construction Noise

Proposal for the change of construction noise monitoring location from NM2 to NM2a was verified by the IEC on 6 May 2016 and was effective on 9 May 2016.

Station ID	DescriptionCoordinates of Designated / Alternative Location		Nature of the location	Related to the Work	
		Easting	Northing		Contract
WM1	Downstream of Kong Yiu Channel	833 679	845 421	Alternative location located at upstream 51m of the designated location	SS C505 Contract 6
WM1- Control	Upstream of Kong Yiu Channel	834 185	845 917	NA	SS C505 Contract 6
WM2A	Downstream of River Ganges	834 204	844 471	Alternative location located at upstream 81m of the designated location	Contract 6
WM2A(a)*	Downstream of River Ganges	834 191	844 474	Alternative location located at upstream 70m of the designated location	Contract 6
WM2A- Controlx#	Upstream of River Ganges	835 377	844 188	Alternative location located at upstream 160m of the designated location	Contract 6
WM2B	Downstream of River Ganges	835 433	843 397	NA	Contract 6
WM2B- Control	Upstream of River Ganges	835 835	843 351	Alternative location located at downstream 31m of the designated location	Contract 6
WM3x#	Downstream of River Indus	836 206	842 270	Alternative location located at downstream 180m of the designated location	Contract 2 Contract 6
WM3- Control	Upstream of River Indus	836 763	842 400	Alternative location located at downstream 26m of the designated location	Contract 2 Contract 6
WM4	Downstream of Ma Wat Channel	833 850	838 338	Alternative location located at upstream 11m of the designated location	Contract 2 Contract 3
WM4– Control A	Kau Lung Hang Stream	834 028	837 695	Alternative location located at downstream 28m of the designated location	Contract 2 Contract 3
WM4– Control B	Upstream of Ma Wat Channel	833760	837395	Alternative location located at upstream 15m of the designated location	Contract 2 Contract 3

 Table 3-4
 Impact Monitoring Stations - Water Quality

Note: EPD has approved the revised EM&A Programme (Rev.7) which proposed that (1) if the measured water depth of the monitoring station is lower than 150 mm, alternative location based on the criteria were selected to perform water monitoring; and (2) If no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample in accordance with the updated EM&A Programme (Rev. 07) (Section 4.1.4) (EPD ref.: () in EP2/N7/A/52 Ax(1) Pt.20 dated 7 April 2017)

(*) Proposal for the change of water monitoring location from WM2A to WM2A(a) was verified by the IEC and it was approved by EPD. (EPD's ref. (10) in EP 2/N7/A/52 Pt.19)

(#) Proposal for the change of water quality monitoring location (WM3x and WM2A-Cx was included in the EM&A Programme Rev .05 which approved by EPD on 29 March 2016 (EPD ref.: (3) in EP2/N7/A/52 Ax(1) Pt.19)

3.4 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in *Sections 2.1.6, 3.1.5* and *4.1.6* of the approved *EM&A Manual* and presented as follows.

Air Quality Monitoring

3.4.1 Frequency of impact air quality monitoring is as follows:

- 1-hour TSP 3 times every six days during course of works
- 24-hour TSP Once every 6 days during course of works.

Noise Monitoring

3.4.2 One set of $L_{eq(30min)}$ as 6 consecutive $L_{eq(5min)}$ between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), additional weekly impact monitoring for $L_{eq(5min)}$ measurement shall be employed during respective restricted hours periods.. Supplementary information for data auditing, statistical results such as L_{10} and L_{90} shall also be obtained for reference.

Water Quality Monitoring

3.4.3 The water quality monitoring frequency shall be 3 days per week during course of works. The interval between two sets of monitoring shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.3 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

Equipment Model				
24-Hr TSP				
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170*			
Calibration Kit	TISCH Model TE-5025A*			
1-Hour TSP				
Portable Dust Meter	Sibata LD-3B Laser Dust monitor Particle Mass Profiler &			
Tottable Dust Weter	Counter*			

Table 3-5Air Quality Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

Wind Data Monitoring Equipment

- 3.5.4 According to the approved EM&A Manual, wind data monitoring equipment shall also be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
 - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
 - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
 - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.
 - 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.5.5 ET has liaised with the landlords of the successful granted HVS installation premises. However,

the owners rejected to provide premises for wind data monitoring equipment installation.

3.5.6 Under this situation, the ET proposed alternative methods to obtain representative wind data. Meteorological information as extracted from "the Hong Kong Observatory Ta Kwu Ling Station" is alternative method to obtain representative wind data. For Ta Kwu Ling Station, it is located nearby the Project site. Moreover, this station is located at 15m above mean sea level while its anemometer is located at 13m above the existing ground which in compliance with the general setting up requirement. Furthermore, this station also can be to provide the humidity, rainfall, and air pressure and temperature etc. meteorological information. In Hong Kong of a lot development projects, weather information extracted from Hong Kong Observatory is common alternative method if weather station installation not allowed.

Noise Monitoring

- 3.5.7 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.8 Noise monitoring equipment to be used for monitoring is listed in *Table 3-6*.

Table 3-6Construction Noise Monitoring Equipment

Equipment	Model	
Integrating Sound Level Meter	B&K Type 2238*	
Calibrator	Rion NC-74* and Rion NC-73*	
Portable Wind Speed Indicator	Testo Anemometer	

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.5.9 Sound level meters listed above comply with the *International Electrotechnical Commission Publications 651: 1979 (Type 1)* and *804: 1985 (Type 1)* specifications, as recommended in TM issued under the NCO. The acoustic calibrator and sound level meter to be used in the impact monitoring will be calibrated yearly.

Water Quality Monitoring

- 3.5.10 DO and water temperature should be measured in-situ by a DO/temperature meter. The instrument should be portable and weatherproof using a DC power source. It should have a membrane electrode with automatic temperature compensation complete with a cable. The equipment should be capable of measuring:
 - a DO level in the range of 0-20 mg/l and 0-200% saturation; and
 - a temperature of between 0 and 45 degree Celsius.
- 3.5.11 A portable pH meter capable of measuring a range between 0.0 and 14.0 should be provided to measure pH under the specified conditions accordingly to the APHA Standard Methods.
- 3.5.12 The instrument should be portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
- 3.5.13 A portable, battery-operated echo sounder or tape measure will be used for the determination of water depth at each designated monitoring station as appropriate.
- 3.5.14 A water sampler e.g. Kahlsico Water Sampler, which is a transparent PVC cylinder with capacity not less than 2 litres, will be used for water sampling if water depth over than 0.5m. For sampling from very shallow water depths e.g. <0.5 m, water sample collection will be directly from water surface below 100mm use sampling plastic bottle to avoid inclusion of bottom sediment or humus. Moreover, Teflon/stainless steel bailer or self-made sampling buckets

maybe used for water sampling. The equipment used for sampling will be depended the sampling location and depth situations.

- 3.5.15 Water samples for laboratory measurement of SS will be collected in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory in the same day as the samples were collected.
- 3.5.16 Analysis of suspended solids should be carried out in a HOKLAS or other accredited laboratory. Water samples of about 1L should be collected at the monitoring stations for carrying out the laboratory suspended solids determination. The SS determination work should start within 24 hours after collection of the water samples. The SS analyses should follow the *APHA Standard Methods 2540D* with Limit of Reporting of 2 mg/L.
- 3.5.17 Water quality monitoring equipment used in the impact monitoring is listed in *Table 3-7*. Suspended solids (SS) analysis is carried out by a local HOKLAS-accredited laboratory, namely *ALS Technichem (HK) Pty Ltd*.

Equipment	Model
Water Depth Detector	Eagle Sonar or tape measures
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends or teflon/stainless steel bailer or self-made sampling bucket
Thermometer & DO meter	YSI Professional Plus /YSI PRO20 Handheld Dissolved Oxygen Instrument/ YSI 550A Multifunctional Meter*/ YSI Professional DSS
pH meter	YSI Professional Plus / AZ8685 pH pen-style meter*/ YSI 6820/ 650MDS/ YSI Professional DSS
Turbidimeter	Hach 2100Q*/ YSI 6820/ 650MDS/ YSI Professional DSS
Sample Container	High density polythene bottles (provided by laboratory)
Storage Container	'Willow' 33-liter plastic cool box with Ice pad

Table 3-7Water Quality Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.6 MONITORING METHODOLOGY

<u>1-hour TSP Monitoring</u>

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

24-hour TSP Monitoring

- 3.6.3 The equipment used for 24-hour TSP measurement is Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with *EPA Code of Federal Regulation*, *Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:
 - (a.) An anodized aluminum shelter;
 - (b.) A 8"x10" stainless steel filter holder;
 - (c.) A blower motor assembly;

- (d.) A continuous flow/pressure recorder;
- (e.) A motor speed-voltage control/elapsed time indicator;
- (f.) A 7-day mechanical timer, and
- (g.) A power supply of 220v/50 Hz
- 3.6.4 The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using Tisch Calibration Kit Model TE-5025A. Calibration would carry out in two month interval.
- 3.6.5 24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

Noise Monitoring

- 3.6.6 Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels dB(A). Supplementary statistical results (L_{10} and L_{90}) were also obtained for reference.
- 3.6.7 During the monitoring, all noise measurements would be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). Leq_(30min) in six consecutive Leq_(5min) measurements will use as the monitoring parameter for the time period between 0700-1900 hours on weekdays; Leq_(5min) measurements would be used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.6.8 Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking is performed before and after the noise measurement.

Water Quality

3.6.9 Water quality monitoring is conducted at the designated or alternative locations. The sampling procedures with the in-situ monitoring are presented as below:

Sampling Procedure

- 3.6.10 A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder or tape measurement is used for the determination of water depth at each station. At each station, water sample would be collected from 0.1m below water surface or the water surface to prevent the river bed sediment for stirring.
- 3.6.11 If the water level of a monitoring station is too shallow when sampling, sediment would be disturbed which affecting the accuracy of water quality monitoring. In order to avoid disturbing sediment, depth limits should be set up for the water sampling for the ease of reference. When the measured water depth of the monitoring station (both control and impact stations) is lower than 150mm, water monitoring would not be to perform at that monitoring location. Instead, the monitoring location will be moved to a temporary alternative location monitoring location based on the criteria below:-
 - (a) the alternative location should be either upstream or downstream of the original location and at the same the river/drain channel
 - (b) the alternative location should be within 15m far from the original location
 - (c) if no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample.
- 3.6.12 The sample container will be rinsed with a portion of the water sample. The water sample then will be transferred to the high-density polythene bottles as provided by the laboratory, labeled

with a unique sample number and sealed with a screw cap.

- 3.6.13 Before sampling, general information such as the date and time of sampling, weather condition as well as the personnel responsible for the monitoring would be recorded on the field data sheet.
- 3.6.14 A 'Willow' 33-liter plastic cool box packed with ice will be used to preserve the water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4^oC as possible without being frozen. Samples collected are delivered to the laboratory upon collection.

<u>In-situ Measurement</u>

- 3.6.15 YSI PRO20 Handheld Dissolved Oxygen Instrument is used for water in-situ measures, which automates the measurements and data logging of temperature, dissolved oxygen and dissolved oxygen saturation.
- 3.6.16 A portable AZ Model 8685 is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1.
- 3.6.17 A portable Hach 2100Q Turbidimeter is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU.
- 3.6.18 All in-situ measurement equipment are calibrated by HOKLAS accredited laboratory of three month interval.

Laboratory Analysis

3.6.19 All water samples analyzed Suspended Solids (SS) will be carried out by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS determination using *APHA Standard Methods 2540D* as specified in the *EM&A Manual* will start within 48 hours of water sample receipt.

3.7 EQUIPMENT CALIBRATION

- 3.7.1 Calibration of the HVS is performed upon installation and thereafter at bimonthly intervals in accordance with the manufacturer's instruction using the certified standard calibrator (TISCH Model TE-5025A). Moreover, the Calibration Kit would be calibrated annually. The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.7.2 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment would be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.
- 3.7.3 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.7.4 All water quality monitoring equipment would be calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.7.5 The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix F*.

3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise and water quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-8, 3-9* and *3-10*.

Table 3-8	Action and Limit Levels for Air Quality Monitoring
-----------	--

Monitoring Station	Action 1	Level (µg /m ³)	Limit Level (µg/m ³)		
Monitoring Station	1-hour TSP	1-hour TSP 24-hour TSP		24-hour TSP	
AM1c	265	143			
AM2	268	149			
AM3	269	145		260	
AM4b	267	148			
AM5a	268	143	500		
AM6	269	148			
AM7b	275	156			
AM8	269	144			
AM9b	271	151			

 Table 3-9
 Action and Limit Levels for Construction Noise

Monitoring Location	Action Level	Limit Level in dB(A)			
Women ing Location	Time Period: 0700-1900 hours on normal weekdays				
NM1, NM2a, NM3, NM4, NM5, NM6, NM7, NM8, NM9, NM10	When one or more documented complaints are received	75 dB(A) ^{Note 1 & Note 2}			

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and65 dB(A) during examination period.

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

[÷.			
Danamatan	Performance		Monitoring Location				
Parameter	criteria	WM1	WM2A(a)	WM2B	WM3x	WM4	
DO	Action Level	^(*) 4.23	^(**) 4.00	^(*) 4.74	^(**) 4.00	^(*) 4.14	
(mg/L)	Limit Level	^(#) 4.19	(**)4.00	^(#) 4.60	^(**) 4.00	^(#) 4.08	
Turbidity	A ation I areal	51.3	24.9	11.4	13.4	35.2	
	Action Level	AND	AND 120% of upstream control station of the same day				
(NTU)	Limit Level	67.6	33.8	12.3	14.0	38.4	
	Lillint Level	AND	130% of upstream control station of the same day				
	Astion Laval	54.5	14.6	11.8	12.6	39.4	
SS (/II.)	Action Level	AND	120% of upstream control station of the same day				
SS (mg/L)		64.9	17.3	12.4	12.9	45.5	
	Limit Level	AND	130% of ups	tream control s	station of the s	ame day	

 Table 3-10
 Action and Limit Levels for Water Quality

Remarks:

(*) The Proposed <u>Action Level</u> of Dissolved Oxygen is adopted to be used 5%-ile of baseline data

(**) The Proposed Action & Limit Level of Dissolved Oxygen is used 4mg/L

(#) The Proposed Limit Level of Dissolved Oxygen is adopted to be used 1%-ile of baseline data

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.9.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- 3.9.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

^{3.8.2} Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix G*.

4 **AIR QUALITY MONITORING**

4.1 GENERAL

- 4.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505. Hence, air quality monitoring was performed at all designated locations.
- 4.1.2 The air quality monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

4.2 AIR QUALITY MONITORING RESULTS

4.2.1 In the Reporting Period, a total of *150* events of 1-hour TSP and *54* events 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Tables 4-1 to 4-9*. The detailed 24-hour TSP monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

	24-hour	1-hour TSP (μg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
1-Jun-18	36	6-Jun-18	9:17	24	32	34	
7-Jun-18	18	12-Jun-18	9:11	66	63	68	
13-Jun-18	38	15-Jun-18	13:16	70	72	76	
19-Jun-18	40	21-Jun-18	10:15	63	64	57	
25-Jun-18	37	27-Jun-18	9:13	61	55	56	
30-Jun-18	47						
Average	36	Avera	•		57		
(Range)	(18-47)	(Rang	ge)		(24 - 76)		

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1c

	24-hour		1	-hour TSP (μg/m ³)			
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
1-Jun-18	114	6-Jun-18	9:13	48	48	47	
7-Jun-18	34	12-Jun-18	9:45	68	71	68	
13-Jun-18	56	15-Jun-18	9:47	61	62	64	
19-Jun-18	78	21-Jun-18	10:08	78	79	77	
25-Jun-18	41	27-Jun-18	9:27	69	64	54	
30-Jun-18	60						
Average (Range)	64 (34 - 114)	Average (Range)			64 (47 - 79)		

Table 4-3	Summary of 24-hour and 1-hour	TSP Monitoring Results – AM3
-----------	-------------------------------	------------------------------

	24-hour	1-hour TSP (µg/m³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
1-Jun-18	63	6-Jun-18	9:10	46	49	45	
7-Jun-18	25	12-Jun-18	13:11	70	66	69	
13-Jun-18	43	15-Jun-18	9:39	52	59	64	
19-Jun-18	63	21-Jun-18	10:05	79	74	77	
25-Jun-18	31	27-Jun-18	9:44	53	42	40	
30-Jun-18	51						
Average	46	Avera	ge		59		

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.59) – June 2018

	24-hour	our <u>1-hour TSP (μg/m³)</u>				
Date	TSP (μg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
(Range)	(25 - 63)	(Range)		(40 - 79)		

Table 4-4Summary of 24-hour and 1-hour TSP Monitoring Results – AM4b

	24-hour		1	-hour TSP (µg	g/m ³)	
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
2-Jun-18	38	1-Jun-18	9:22	82	79	82
8-Jun-18	55	7-Jun-18	9:36	63	69	72
14-Jun-18	35	13-Jun-18	9:30	60	70	54
20-Jun-18	58	19-Jun-18	10:52	61	68	69
26-Jun-18	31	25-Jun-18	10:15	59	58	53
30-Jun-18	48	30-Jun-18	8:47	65	58	49
Average (Range)	44 (31 -58)	Avera (Rang	•		65 (49 - 82)	

Table 4-5	Summary of 24-hour and 1-hour TSP Monitoring Results – AM5a
-----------	---

	24-hour	1-hour TSP (µg/m ³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
2-Jun-18	59	1-Jun-18	9:19	88	90	91
8-Jun-18	19	7-Jun-18	9:34	62	64	71
14-Jun-18	41	13-Jun-18	9:45	68	79	63
20-Jun-18	43	19-Jun-18	10:44	72	88	79
26-Jun-18	25	25-Jun-18	10:18	57	56	51
30-Jun-18	46	30-Jun-18	8:48	63	57	46
Average	39	Avera	ige		69	
(Range)	(19 –59)	(Rang	ge)		(46 – 91)	

Table 4-6Summary of 24-hour and 1-hour TSP Monitoring Results – AM6

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
2-Jun-18	60	1-Jun-18	9:15	85	81	83	
8-Jun-18	25	7-Jun-18	9:26	62	64	66	
14-Jun-18	84	13-Jun-18	9:35	66	77	61	
20-Jun-18	65	19-Jun-18	10:55	80	87	84	
26-Jun-18	31	25-Jun-18	10:40	62	60	56	
30-Jun-18	53	30-Jun-18	8:53	58	52	42	
Average (Range)	53 (25 - 84)	Avera (Rang	e		68 (42 - 87)		

	24-hour	1-hour TSP (µg/m³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
2-Jun-18	143	1-Jun-18	9:10	89	91	93
8-Jun-18	46	7-Jun-18	9:22	64	63	67
14-Jun-18	56	13-Jun-18	9:08	49	51	48

	24-hour	1-hour TSP (μg/m³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
20-Jun-18	76	19-Jun-18	9:19	73	72	74
26-Jun-18	28	25-Jun-18	9:18	77	73	74
30-Jun-18	55	30-Jun-18	9:01	63	55	49
Average (Range)	67 (28 - 143)	Avera (Rang	•		68 (48– 93)	

Table 4-8Summary of 24-hour and 1-hour TSP Monitoring Results – AM8

	24-hour	1-hour TSP (µg/m³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
2-Jun-18	46	1-Jun-18	9:00	49	49	47	
8-Jun-18	59	7-Jun-18	9:11	60	64	72	
14-Jun-18	51	13-Jun-18	13:28	45	47	50	
20-Jun-18	32	19-Jun-18	12:56	74	74	75	
26-Jun-18	31	25-Jun-18	13:07	73	71	70	
30-Jun-18	39	30-Jun-18	9:09	61	52	38	
Average	43	Avera	ige		60		
(Range)	(31 – 59)	(Rang	ge)		(38 – 75)		

Table 4-9	Summary of 24-hour and 1-hour TSP Monitoring Results – AM9b

	24-hour		1-hour TSP (µg/m³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
1-Jun-18	67	6-Jun-18	13:15	59	54	49	
7-Jun-18	26	12-Jun-18	9:24	94	103	108	
13-Jun-18	18	15-Jun-18	9:06	72	71	67	
19-Jun-18	22	21-Jun-18	9:33	65	67	65	
25-Jun-18	31	27-Jun-18	9:35	78	80	74	
30-Jun-18	25						
Average (Range)	32 (18 - 67)	Avera (Rang	•		74 (49 – 108)		

- 4.2.2 As shown in *Tables 4-1 to 4-9*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.3 The meteorological data during the impact monitoring days are summarized in *Appendix K*.

5 CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and noise monitoring was performed at all designated locations.
- 5.1.2 The noise monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

5.2 NOISE MONITORING RESULTS

5.2.1 In the Reporting Period, a total of **45** events noise measurements were carried out at the designated locations. The sound level meter was set in 1m from the exterior of the building façade including noise monitoring locations NM1, NM3, NM4, NM5, NM6, NM7, NM8 and NM9. Therefore, no façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines. However, free-field status were performed at NM2a and NM10 and façade correction (+3 dB(A)) has added according to the requirement in this month. The noise monitoring results at the designated locations are summarized in *Tables 5-1 and 5-2*. The detailed noise monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Table 5-1	Summary of	Construction Noi	se Monitoring Results

Construction Noise Level (L _{eq30min}), dB(A)								
Date	NM1	NM2a ^(*)	NM8	NM9	NM10 ^(*)			
6-Jun-18	67	72	59	59	61			
12-Jun-18	58	68	62	62	64			
21-Jun-18	63	67	58	60	66			
27-Jun-18	57	68	60	59	62			
Limit Level		75 dB(A)						

Remarks

(*) façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines

 Table 5-2
 Summary of Construction Noise Monitoring Results

Construction Noise Level (Leq30min), dB(A)							
Date	NM3	NM4	NM5	NM6	NM7		
1-Jun-18	60	64	63	63	62		
7-Jun-18	64	65	53	59	62		
13-Jun-18	63	63	53	57	59		
19-Jun-18	59	61	59	59	64		
25-Jun-18	63	60	59	61	64		
Limit Level			75 dB(A)				

^{5.2.2} As shown in *Tables 5-1 and 5-2*, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint (which triggered Action Level exceedance) was recorded in the Reporting Period.

6 WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 In the Reporting Period, construction works under the project has been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and water quality monitoring was performed at all designated locations. The water quality monitoring schedule is presented in *Appendix H*. The monitoring results are summarized in the following sub-sections.

6.2 **RESULTS OF WATER QUALITY MONITORING**

- 6.2.1 In the Reporting Period, a total of **thirteen (13)** sampling days was scheduled to carry out for all designated locations with their control stations. Since exceedances were recorded at WM2A(a), WM3x and WM4, according to "*Event and Action Plan*" stipulation, **8**, **3** and **1** additional water quality monitoring day were conducted for WM2A(a), WM3x and WM4 respectively and their control stations.
- 6.2.2 The key monitoring parameters including Dissolved Oxygen, Turbidity and Suspended Solids are summarized in *Tables 6-1 to 6-5*. Breaches of water quality monitoring criteria are shown in *Table 6-6*. Detailed monitoring database including in-situ measurements and laboratory analysis data are shown in *Appendix I* and the relevant graphical plot are shown in *Appendix J*.

Dice				water Quarty Homtoring Results Associated of Contracts 2 and 5									
DISS	solved Oxy (mg/L)	vgen		Turbidity (NTU)		Suspended Solids (mg/L)							
WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB					
4.3	5.2	4.0	14.2	4.9	11.7	9.0	6.5	8.5					
5.4	4.1	5.1	12.0	6.1	10.8	41.0	23.0	35.0					
5.3	4.5	3.6	69.3	40.5	64.3	38.5	16.5	34.5					
8.4	7.2	5.8	67.4	36.4	56.7	62.0	3.5	97.0					
6.6	6.6	7.0	102.5	3.0	144.5	17.0	7.0	16.5					
5.9	5.8	4.3	22.1	15.2	19.5	12.0	<2	7.0					
6.9	9.9	5.1	27.7	13.1	10.4	4.0	3.0	<2					
6.9	8.2	5.4	13.8	6.4	8.0	27.5	2.0	7.5					
5.5	7.6	4.0	48.2	6.6	9.9	23.0	5.0	10.0					
#	#	#	58.0	3.8	6.1	193.5	111.0	181.5					
7.7	8.2	7.5	225.5	166.5	194.0	17.0	<2	8.0					
7.6	8.2	4.9	34.7	8.7	19.6	10.5	2.5	10.0					
7.8	7.9	6.4	19.9	4.9	15.6	36.5	3.0	6.0					
7.5	8.3	5.7	32.8	11.8	10.0	9.0	6.5	8.5					
	$\begin{array}{r} 4.3 \\ 5.4 \\ 5.3 \\ 8.4 \\ 6.6 \\ 5.9 \\ 6.9 \\ 6.9 \\ 5.5 \\ \# \\ 7.7 \\ 7.6 \\ 7.8 \\ 7.5 \end{array}$	WM4 WM4-CA 4.3 5.2 5.4 4.1 5.3 4.5 8.4 7.2 6.6 6.6 5.9 5.8 6.9 9.9 6.9 8.2 5.5 7.6 # # 7.7 8.2 7.6 8.2 7.8 7.9 7.5 8.3	WM4WM4-CAWM4-CB 4.3 5.2 4.0 5.4 4.1 5.1 5.3 4.5 3.6 8.4 7.2 5.8 6.6 6.6 7.0 5.9 5.8 4.3 6.9 9.9 5.1 6.9 8.2 5.4 5.5 7.6 4.0 ### 7.7 8.2 7.5 7.6 8.2 4.9 7.8 7.9 6.4 7.5 8.3 5.7	WM4WM4-CAWM4-CBWM4 4.3 5.2 4.0 14.2 5.4 4.1 5.1 12.0 5.3 4.5 3.6 69.3 8.4 7.2 5.8 67.4 6.6 6.6 7.0 102.5 5.9 5.8 4.3 22.1 6.9 9.9 5.1 27.7 6.9 8.2 5.4 13.8 5.5 7.6 4.0 48.2 $\#$ $\#$ $\#$ 58.0 7.7 8.2 7.5 225.5 7.6 8.2 4.9 34.7 7.8 7.9 6.4 19.9 7.5 8.3 5.7 32.8	WM4WM4-CAWM4-CBWM4WM4-CA 4.3 5.2 4.0 14.2 4.9 5.4 4.1 5.1 12.0 6.1 5.3 4.5 3.6 69.3 40.5 8.4 7.2 5.8 67.4 36.4 6.6 6.6 7.0 102.5 3.0 5.9 5.8 4.3 22.1 15.2 6.9 9.9 5.1 27.7 13.1 6.9 8.2 5.4 13.8 6.4 5.5 7.6 4.0 48.2 6.6 ### 58.0 3.8 7.7 8.2 7.5 225.5 166.5 7.6 8.2 4.9 34.7 8.7 7.8 7.9 6.4 19.9 4.9 7.5 8.3 5.7 32.8 11.8	WM4WM4-CAWM4-CBWM4WM4-CAWM4-CB 4.3 5.2 4.0 14.2 4.9 11.7 5.4 4.1 5.1 12.0 6.1 10.8 5.3 4.5 3.6 69.3 40.5 64.3 8.4 7.2 5.8 67.4 36.4 56.7 6.6 6.6 7.0 102.5 3.0 144.5 5.9 5.8 4.3 22.1 15.2 19.5 6.9 9.9 5.1 27.7 13.1 10.4 6.9 8.2 5.4 13.8 6.4 8.0 5.5 7.6 4.0 48.2 6.6 9.9 ### 58.0 3.8 6.1 7.7 8.2 7.5 225.5 166.5 194.0 7.6 8.2 4.9 34.7 8.7 19.6 7.8 7.9 6.4 19.9 4.9 15.6	WM4WM4-CAWM4-CBWM4WM4-CAWM4-CBWM4 4.3 5.2 4.0 14.2 4.9 11.7 9.0 5.4 4.1 5.1 12.0 6.1 10.8 41.0 5.3 4.5 3.6 69.3 40.5 64.3 38.5 8.4 7.2 5.8 67.4 36.4 56.7 62.0 6.6 6.6 7.0 102.5 3.0 144.5 17.0 5.9 5.8 4.3 22.1 15.2 19.5 12.0 6.9 9.9 5.1 27.7 13.1 10.4 4.0 6.9 8.2 5.4 13.8 6.4 8.0 27.5 5.5 7.6 4.0 48.2 6.6 9.9 23.0 $\#$ $\#$ $\#$ 58.0 3.8 6.1 193.5 7.7 8.2 7.5 225.5 166.5 194.0 17.0 7.6 8.2 4.9 34.7 8.7 19.6 10.5 7.8 7.9 6.4 19.9 4.9 15.6 36.5 7.5 8.3 5.7 32.8 11.8 10.0 9.0	WM4WM4-CAWM4-CBWM4WM4-CAWM4-CBWM4WM4-CA 4.3 5.2 4.0 14.2 4.9 11.7 9.0 6.5 5.4 4.1 5.1 12.0 6.1 10.8 41.0 23.0 5.3 4.5 3.6 69.3 40.5 64.3 38.5 16.5 8.4 7.2 5.8 67.4 36.4 56.7 62.0 3.5 6.6 6.6 7.0 102.5 3.0 144.5 17.0 7.0 5.9 5.8 4.3 22.1 15.2 19.5 12.0 <2 6.9 9.9 5.1 27.7 13.1 10.4 4.0 3.0 6.9 8.2 5.4 13.8 6.4 8.0 27.5 2.0 5.5 7.6 4.0 48.2 6.6 9.9 23.0 5.0 $\#$ $\#$ $\#$ 58.0 3.8 6.1 193.5 111.0 7.7 8.2 7.5 225.5 166.5 194.0 17.0 <2 7.6 8.2 4.9 34.7 8.7 19.6 10.5 2.5 7.8 7.9 6.4 19.9 4.9 15.6 36.5 3.0 7.5 8.3 5.7 32.8 11.8 10.0 9.0 6.5					

 Table 6-1
 Water Quality Monitoring Results Associated of Contracts 2 and 3

Remarks: bold and underline indicated Limit Level exceedance

(#) Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

 Table 6-2
 Water Quality Monitoring Results Associated of Contracts 6 and SS C505

Date		d Oxygen g/L)		oidity ΓU)	Suspended Solids (mg/L)		
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C	
2-Jun-18	4.3	4.4	7.0	11.8	4.0	10.5	
4-Jun-18	4.6	6.2	8.7	18.2	8.5	17.5	
6-Jun-18	5.4	5.5	over range	over range	1170.0	1275.0	
8-Jun-18	5.3	6.7	247.5	255.0	175.0	167.0	
11-Jun-18	6.1	6.5	11.1	5.3	14.5	8.5	
13-Jun-18	6.8	4.2	14.1	38.6	16.0	27.0	
15-Jun-18	6.3	6.8	16.2	8.9	13.5	5.5	
19-Jun-18	5.8	7.5	18.8	11.7	9.5	5.0	
21-Jun-18	6.1	5.2	48.5	14.3	27.0	2.5	
23-Jun-18	5.5	6.8	170.5	304.0	93.5	122.0	
25-Jun-18	4.9	6.0	32.8	30.0	19.5	15.0	
28-Jun-18	6.4	7.2	26.4	17.0	23.5	9.0	

Date	Dissolved Oxygen (mg/L)		Turb (N)	oidity ΓU)	Suspended Solids (mg/L)		
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C	
30-Jun-18	6.7	7.6	44.2	14.9	29.0	7.5	

Table 6-3	Water Quality Monitoring Results Associated only Contract 6

Data	D) issolved mg	d Oxygo g/L)	en		Turbidity (NTU)			Suspended Solids (mg/L)			
Date	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A - Cx	WM2B	WM2B- C	WM2A(a)		WM2B	WM2 B- C
2-Jun-18	5.3	4.4	*	*	24.1	14.0	*	*	13.0	5.0	*	*
4-Jun-18	5.9	5.8	*	*	20.5	13.3	*	*	10.0	2.0	*	*
6-Jun-18	5.6	6.3	*	*	<u>967.5</u>	243.0	*	*	444.5	126.5	*	*
7-Jun-18#	#	#	*	*	<u>345.5</u>	27.8	*	*	266.0	27.0	*	*
8-Jun-18	6.4	8.6	*	*	<u>over</u> range	263.5	*	*	<u>785.0</u>	70.0	*	*
9-Jun-18#	#	#	*	*	183.0	5.1	*	*	80.0	2.0	*	*
11-Jun-18	6.1	6.6	*	*	<u>64.1</u>	6.0	*	*	54.5	3.0	*	*
12-Jun-18#	#	#	*	*	84. 7	4.2	*	*	38.0	2.0	*	*
13-Jun-18	5.4	7.6	*	*	242.0	24.8	*	*	150.0	6.5	*	*
14-Jun-18#	#	#	*	*	<u>90.5</u>	10.8	*	*	54.0	6.0	*	*
15-Jun-18	6.4	7.4	*	*	65.1	14.3	*	*	40.5	2.0	*	*
16-Jun-18#	#	#	*	*	24.1	6.1	*	*	15.0	<2	*	*
19-Jun-18	6.2	6.8	*	*	265.5	11.3	*	*	136.0	<2	*	*
20-Jun-18#	#	#	*	*	24.0	7.8	*	*	11.0	2.0	*	*
21-Jun-18	4.9	7.4	*	*	21.5	11.5	*	*	14.0	5.5	*	*
23-Jun-18	7.5	8.0	*	*	586.0	101.5	*	*	201.0	21.0	*	*
25-Jun-18	7.3	7.5	*	*	106.5	18.7	*	*	60.5	5.5	*	*
26-Jun-18	#	#	*	*	46.6	7.1	*	*	28.0	6.0	*	*
27-Jun-18	#	#	*	*	21.8	6.9	*	*	14.5	6.0	*	*
28-Jun-18	6.8	7.7	*	*	24.9	22.1	*	*	16.0	18.0	*	*
30-Jun-18	7.2	7.8	*	*	12.5	8.3	*	*	14.5	4.0	*	*

Remarks: * water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm

(#) Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Bold and underline indicated Limit Level exceedance Bold and italic indicated Action Level exceedance

Table 6-4Water Quality Monitoring Results Associated Contracts 2 and 6

Date		d Oxygen g/L)		oidity ΓU)	Suspended Solids (mg/L)		
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C	
2-Jun-18	6.4	5.2	13.1	3.2	9.0	<2	
4-Jun-18	6.9	6.3	11.6	12.8	11.0	16.5	
6-Jun-18	5.2	5.3	<u>624.0</u>	70.8	472.5	57.0	
7-Jun-18	#	#	69.1	70.0	54.0	58.0	
8-Jun-18	6.1	6.2	89.5	240.0	40.0	122.5	
11-Jun-18	6.2	7.1	13.0	6.7	13.5	13.0	
13-Jun-18	6.8	5.9	73.6	16.1	<u>51.0</u>	16.0	
14-Jun-18	#	#	33.2	3.6	30.0	17.0	
15-Jun-18	5.5	7.6	24.0	7.3	22.0	6.5	
16-Jun-18	#	#	7.9	4.0	4.0	4.0	
19-Jun-18	6.4	6.9	5.5	3.8	3.0	<2	
21-Jun-18	5.3	4.9	12.8	14.9	7.0	29.0	
23-Jun-18	7.4	7.4	263.0	223.5	204.5	189.5	
25-Jun-18	6.5	7.5	10.7	10.4	4.0	<2	
28-Jun-18	6.7	7.2	13.1	3.4	12.5	9.0	

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.59) – June 2018

Date	Dissolved Oxygen (mg/L)		Turk (N)	oidity ΓU)	Suspended Solids (mg/L)	
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C
30-Jun-18	6.8	7.5	13.0	5.6	11.5	4.5

Remarks: bold and underline indicated Limit Level exceedance

(#) Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-5	Action and Limit (A/L) Levels Exceedance Recorded
-----------	---

Location		olved ygen	Turt	oidity	-	ended lids		otal edance	•	t Related edance
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
WM1	0	0	0	0	0	0	0	0	0	0
WM2A	0	0	0	13	1	13	1	26	#	#
WM2B	0	0	0	0	0	0	0	0	0	0
WM3x	0	0	0	4	0	4	0	8	0	0
WM4	0	0	0	2	0	0	0	2	0	0
No of Exceedance	0	0	0	19	1	17	1	36	0	0

The exceedances at WM2A(a) on 23, 25 and 26 June 2018 are still under investigation.

- 6.2.3 In this Reporting Period, a total of thirty-seven (37) Action/ Limit Level exceedances, namely nineteen (19) Limit Level exceedance of turbidity and eighteen (18) Action/ Limit Level exceedances of Suspended Solids were recorded for the Project and they are summarized in Table 6-5. Investigation Reports for water quality exceedances have been conducted by ET accordingly. Investigation results revealed that the Contractor had properly implemented water quality mitigation measures such as well-maintained the wastewater treatment facility and covered the expose area with impervious sheet. It was concluded that all exceedances recorded at WM3x and WM4 and exceedances recorded at WM2A(a) during 6 to 15 June 2018 were related to the rainstorm or external inflow of muddy water and unlikely caused by the works under the Project. The investigation report for exceedances at WM2A(a) on 23, 25 and 26 June 2018 is still under review by IEC and the investigation result will be presented in next Monthly EM&A Report.
- 6.2.4 NOE was issued to relevant parties upon confirmation of the monitoring result. The investigation results and summary of exceedances are summarized in *Table 6-6*. The details of the completed investigation reports for the exceedances are attached in *Appendix N*.

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief	
21 and 22 June 2018	WM4	Turbidity	In our investigation, the Contractor had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. There were no adverse water quality impacts observed during the site inspection. However, inflow of unknown source of muddy water was observed from outside the site boundary of the construction site which affecting the water quality of the stream. It was concluded that the exceedances were not related to the works under the Project.	
6, 13, 14 and 15 June 2018	WM3x	Turbidity & SS	There were heavy rainstorm recorded on 6 and 13 June 2018 and Amber Rainstorm Warning Signal were in force in both days. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment even outside the construction site. On 6	

 Table 6-6
 Summary of Water Quality Exceedance in the Reporting Period

		Tuun Report	· · · · ·
6, 7, 8, 9 and 11 June 2018	WM2A(a)	NTU & SS	June 2018, muddy water was observed throughout the Ng Tung River including upstream of the project due to heavy rainstorm. Moreover, as reported by the Contractor, large amount of silts were washed downstream from a villager's backfilled site situated at upper section of Loi Tung Stream. In our investigation, the Contractor had implemented and well maintained the wastewater treatment facilities and no adverse water quality impact was identified during site inspection. In view of the external source of muddy water observed due to rainstorm, it is considered that the exceedances were related to other source of turbid water and not caused by the works under the Project. There were heavy rainstorm recorded during 5 to 8 June 2018, in which Amber Rainstorm Warning Signal was in force on 6 and 8 June 2018 and Red Rainstorm Warning Signal was in force on 8 June 2018. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment even outside the construction site. On 9 June 2018, it was observed that muddy water from upstream after rainstorm was being trapped at the Nylon Dam which located at intermediate of the construction site. On 11 June 2018, deflate of Nylon Dam was observed and muddy water was generated by the stirred up sediment accumulated at the river bed. In our investigation, the Contractor had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection and the site condition was general in order after the rainstorm. Since muddy water was observed from upstream during rainstorm and got trapped at Nylon Dam in the following days, it is considered that the exceedances on 6 to 8 June 2018 were related to the residual impact of rainstorm.
12, 13, 14 and 15 June 2018	WM2A(a)	NTU & SS	There were heavy rainstorm recorded during 12 to 14 June 2018 in which Amber Rainstorm Warning Signal was in force on 13 June 2018. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment even outside the construction site. Moreover, it was observed that muddy water generated under rainstorm was being trapped at the Nylon Dam which located at intermediate of the construction site. Deflation of Nylon Dam was observed during the monitoring and muddy water was generated by the stirred up sediment accumulated at the river bed. In our investigation, the Contractor had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection and the site condition was general in order. It is concluded that the exceedances on 12 to 15 June 2018 were due to

			stirred up sediment during deflation of Nylon Dam and not related to the works under the Project.
16 and 19 June 2018	WM2A(a)	NTU & SS	As reported by the Contractor on 19 June 2018, inflow of muddy water was observed at WM2A-C from upstream of the construction site in the morning time before the water monitoring. Besides, there was no rainfall recorded on 16 June 2018 while trace amount of rainfall was recorded on 19 June 2018. In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection and the site condition was general in order. It is considered that the exceedance on 16 June 2018 was unlikely due to the contract work while the exceedances on 19 June 2018 were likely related to the external source of muddy water from upstream of the Project and not caused by the works under the Project.
23, 25 and 26 June 2018	WM2A(a)	NTU & SS	The draft IR made by ET was submitted to IEC on 12 July 2018 and IEC issued comments on 13 July. The revised IR provided by ET on 13 July 2018 is under review by IEC.

7 ECOLOGY MONITORING

7.1 GENERAL

- 7.1.1 Ecology monitoring for woodland compensation was shall be conducted at bi-monthly interval for the first year and the monitoring frequency would be reduced to quarterly from the second year.
- 7.1.2 The last Quarterly Ecological Monitoring Report (March to May 2018) was submitted to EPD in May 2018 in standalone copy as supplementary of the EM&A Report. There was no ecological monitoring conducted in the Reporting Period.

8 WASTE MANAGEMENT

8.1 GENERAL WASTE MANAGEMENT

8.1.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for each contract.

8.2 **RECORDS OF WASTE QUANTITIES**

- 8.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 8.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix L*. Whenever possible, materials were reused on-site as far as practicable.

Contract SS C505 Contract 2 Contract 3 Contract 4 Contract 7 Contract 6 Type of Total Qty Disposal location Disposal Disposal Disposal Disposal Disposal Waste Qty. Qty. Qty. Otv. Qty. Otv. location location location location location C&D Materials 8.5257 6.828 0.862 0 2.206 0 18.4217 ---___ --(Inert) (in '000m³) Reused in this Contract 0 0.515 ---0 0 ---0 ---0.376 ---0.891 ------(Inert) (in '000 m³) Reused in Recycling other facility as Contracts/ 0.9775 3.1916 0 NENT 0 0 4.1691 approved ---0 ---------Projects alternative (Inert) site (in '000 m³) Disposal as Public Fill Tuen Mun Tuen Tuen TKO 5.3341 0.265 1.228 0 0 --5.792 12.6191 --Mun 38 (Inert) 38 Mun 38 137 $(in '000 m^3)$

Table 8-1Summary of Quantities of Inert C&D Materials for the Project

Table 8-2Summary of Quantities of C&D Wastes for the Project

	Cont	tract 2	Cont	tract 3	Cont	ract 4	Con	tract 6	Contr	act 7	Contract	SS C505	Total
Type of Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Quantity
Recycled Metal ('000kg)#	31.7800	Licensed collector	0	-	0		0		6.0	Licensed collector	138.850	Licensed collector	176.63
Recycled Paper / Cardboard Packing ('000kg) #	0.2870	Licensed collector	0	-	0	-	0.270	Licensed collector	0.4	Licensed collector	0.990	Licensed collector	1.947
Recycled Plastic ('000kg)#	2.3000	Licensed collector	0	-	0		0		0.001	Licensed collector	0		2.301
Chemical Wastes ('000kg) #	0.1760	Licensed collector	0	-	0	-	0		0		1.200	Licensed collector	1.376
General Refuses ('000m ³)	0.7534	NENT	0.110	NENT	0		0.714	NENT	0.05	NENT	2.997	NENT	4.6244

Remark #: Unit of recycled metal, recycled paper/ cardboard packing, recycled plastic and chemical waste for Contract 3 was in ('000m^3) while the unit of chemical waste for Contract 3 was in ('m^3).

9 SITE INSPECTION

9.1 **REQUIREMENTS**

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

Contract 2

- 9.2.1 In the Reporting Period, joint site inspection for Contract 2 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 22 and 29 June 2018. No non-compliance was noted.
- 9.2.2 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 9-1*.

Date	Findings / Deficiencies	Follow-Up Status
1 June 2018	• Drip tray should be provided for all chemical storage on-site and proper chemical label should be displayed on chemical containers. (North Portal)	• Oil drums without drip tray were removed.
8 June 2018	 Turbid water overflow from de-silting system was observed. All water discharged from site should be treated by proper de-silting facilities and fully comply with discharge license requirement. (South Portal) 	 No turbid water was observed and the water was treated properly before discharge. NA
15 June 2018 22 June 2018	 No adverse environmental issue was observed. NRMM label should be displayed properly for 	NA.NRMM label has
22 June 2018	 NRMM using on site. (Generator) (South portal) Proper maintenance should be provided for de-silting facilities. (North portal) The contractor was reminded to provide sand bags to seal up the footing of site hoarding to prevent site surface runoff flowing to public area. (South Portal) 	 Network label has been displayed on the generator. The damaged pipe has been repaired. Not required for reminder.
29 June 2018	• The Contractor was reminded to maintain cleanilness and tidiness of the site exit. Sand and drbris cumulated near the site exit should be cleared more frequency. (Admin Building)	• Not required for reminder.

Table 9-1Site Observations for Contract 2

Contract 3

- 9.2.3 In the Reporting Period, joint site inspection for Contract 3 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 7, 14, 20 and 28 June 2018. No non-compliance was noted.
- 9.2.4 The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 9-2*.

Table 9-2Site Observations for Contract 3

Date	Findings / Deficiencies	Follow-Up Status				
7 June 2018	• It was reminded that wastewater generated from the project site should be properly treated	*				

Date	Findings / Deficiencies	Follow-Up Status
	 before discharge. The Contractor was reminded that the water diversion system at BC02 should be maintained to prevent overflow. 	• Not required for reminder.
	• It was reminded that stagnant water accumulated in site after rain should be treated before discharge.	• Not required for reminder.
14 June 2018	• The Contractor was reminded to remove stagnant water on site after rainy days.	• Not required for reminder.
20 June 2018	 Construction activities carried out next to the temporary division channel was observed, the Contractor was advised to lengthen the earth bund of the works area to reduce the risk of muddy water flowing into the stream.(Location: BC02) The Contractor was reminded to divert the stagnant water to the wastewater treatment facilities for treatment prior charge off site. 	• The earth bund of the works area was lengthened.
28 June 2018	 Not enough proper mitigation along stream at work area of BC02 was observed. The Contractor should provide proper mitigation measure along the river to avoid potential surface runoff into the stream. The Contractor was reminded to replace broken sand bags near river at work area of AB 1. 	• Open slope was covered with tarpaulin sheet to avoid potential surface runoff out of the site.

Contract 4

- 9.2.5 In the Reporting Period, joint site inspection for Contract 4 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 22 and 25 June 2018. No non-compliance was noted.
- 9.2.6 The findings / deficiencies of *Contract 4* that observed during the weekly site inspection are listed in *Table 9-3*.

Table 9-3Site Observations for Contract 4

Date	Findings / Deficiencies	Follow-Up Status
1 June 2018	• No adverse environmental issue was observed.	• NA
8 June 2018	• No adverse environmental issue was observed.	• NA
15 June 2018	• No adverse environmental issue was observed.	• NA
22 June 2018	• No adverse environmental issue was observed.	• NA
25 June 2018	• No adverse environmental issue was observed.	• NA

Contract 6

- 9.2.7 In the Reporting Period, joint site inspection for Contract 6 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 7, 14, 21 and 28 June 2018. No non-compliance was noted.
- 9.2.8 The findings / deficiencies of *Contract 6* that observed during the weekly site inspection are listed in *Table 9-4*.

Table 9-4	Site Observations for	Contract 6
		0011111000

Date	Findings / Deficiencies	Follow-Up Status
7 June 2018	• No adverse environmental issue was observed.	• NA
14 June 2018	• No adverse environmental issue was observed.	• NA
21 June 2018	• Overflow of muddy runoff from site boundary to public area at Chuk Yuen Village and Bridge Y were observed. The Contractor should clean up the muddy runoff immediately at public area and provide proper mitigation measure such as proper temporary drainage diversion for muddy surface runoff.	• Proper mitigation measure was provided at site boundary to avoid surface runoff out of site.
28 June 2018	• No adverse environmental issue was observed.	• NA

Contract SS C505

- 9.2.9 In the Reporting Period, joint site inspection for Contract SS C505 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on 8, 13, 20 and 27 June 2018 in which IEC joined the site inspection on 27 June 2018. No non-compliance was noted.
- 9.2.10 The findings / deficiencies of *Contract SS C505* that observed during the weekly site inspection are listed in *Table 9-5*.

Table 9-5Site Observations for Contract SS C505

Date	Findings / Deficiencies	Follow-Up Status
8 June 2018	• The Contractor was reminded to place oil drums with drip tray underneath.	• Not required for reminder.
13 June 2018	• Accumulation of wastes were observed on the ground next to building 7. The Contractor was advised to dispose the waste regularly and provide proper storage area.	• Proper storage area for waste was provided on-site.
	 Chemical containers were observed on the roof of building 5. The Contractor should place chemical containers inside drip tray. The Contractor was reminded to clean stagnant water within site area after raining. 	 Chemical containers were relocated in proper storage area.
20 June 2018	 Stockpiles of cement bags were observed on the ground of building 4. The Contractor should cover it with tarpaulin sheet to avoid dust emission. The Contractor was reminded to clear the stagnant water within site area after rain. 	• Stockpiles of cement bags were covered with tarpaulin Sheets
27 June 2018	• The fork lift near site office was observed without NRMM label. The Contractor should provide NRMM label for fork lift on-site.	NRMM label was provided for fork lift.
	• The Contractor was reminded to cover open cement bags properly.	• Not required for reminder.
	• The Contractor was reminded to improve house-keeping within site area.	• Not required for reminder.
	• The Contractor was reminded to clear stagnant water within site area.	• Not required for reminder.

Contract 7

- 9.2.11 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 19 and 29 June 2018. No non-compliance was noted.
- 9.2.12 The findings / deficiencies of *Contract* 7 that observed during the weekly site inspection are listed in *Table 9-6*.

Date	Findings / Deficiencies	Follow-Up Status
1 June 2018	• No adverse environmental issue was observed.	• NA
8 June 2018	• Accumulation of general refuse was observed at the ground. The Contractor should dispose waste regularly.	 General refuse was disposed regularly.
15 June 2018	• The Contractor was reminded to clean the stagnant water under Bridge C.	• Not required for reminder
19 June 2018	• Accumulation of stagnant water under Bridge C was observed after raining. The Contractor was advised to clean the stagnant water to avoid mosquito breeding.	• Stagnant water was removed and filled with mud.
	• The Contractor was reminded to clean the stagnant water under Bridge C.	• Not required for reminder
29 June 2018	• The Contractor was reminded to replace the sandbag to ensure no site runoff discharge from site without proper treatment.	• Not required for reminder

Table 9-6	Site Observations	for Contract 7
		IOI Contract /

9.2.13 General housekeeping such as daily site tidiness and cleanliness should be maintained for all Contracts. Furthermore, the Contractors were reminded to implement Waste Management Plan of the Project.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 Environmental Complaint, Summons and Prosecutions

- 10.1.1 In the Reporting Period, no environmental complaints were received under the EM&A program of the Project. Moreover, no summons and prosecution under the EM&A Programme was lodged for all Contracts. The status of the outstanding investigation report in previous months is summarized below.
- 10.1.2 The statistical summary of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.

Table 10-1	Statistical Summary of Environmental Complaints				
Reporting	Contract	Environmental Complaint Statistics			Project related
Period	No	Frequency	Cumulative	Complaint Nature	complaint
19 May 2014 – 31 May 2018	Contract 2	0	35	 (19)Water Quality (8) Dust (5) Noise (1) dust & noise (1) waste management (1) Water quality and dust 	(7) water quality (2) dust (1) noise
06 Nov 2013 – 31 May 2018	Contract 3	0	6	 (2) Dust (3) Water quality (1) Noise 	0
16 Aug 2013 – 31 May 2018	Contract 5	0	4	 (3) Dust (1) Noise 	0
16 Aug 2013 – 31 May 2018	Contract 6	0	38	 (23) Water Quality (8) Dust (3) Noise (1) Nuisance (1) Noise and dust (2) Water quality and dust 	(7) water quality (3) dust (1) Nuisance (1) Water quality and dust
15 Feb 2016 – 31 May 2018	Contract 7	0	3	 (1) Noise (2) Water quality and dust 	(1) Water quality and dust
16 Aug 2013 – 31 May 2018	SS C505	0	5	 (1) Noise (1) dust (2) Water quality and dust (1) Water quality 	(1) Water quality and dust
	Contract 2	0	35	 (19)Water Quality (8) Dust (5) Noise (1) dust & noise (1) waste management (1) Water quality and dust 	NA
1 – 30 June 2018	Contract 3	0	6	 (2) Dust (3) Water quality (1) Noise 	NA
	Contract 4	0	0	NA	NA
	Contract 6	0	38	 (23) Water Quality (8) Dust (3) Noise (1) Nuisance (1) Noise and dust (2) Water quality and dust 	NA

 Table 10-1
 Statistical Summary of Environmental Complaints

Reporting	Contract	Environmental Complaint Statistics			Project related
Period	No	Frequency	Cumulative	Complaint Nature	complaint
	Contract 7	0	3	 (1) Noise (2) Water quality and dust 	NA
	SS C505	0	5	 (1) Noise (1) dust (2) Water quality and dust (1) Water quality 	NA

Table 10-2 Statistical Summary of Environmental Summons

Donouting Doniod	Contract No	Environmental Summons Statistics		
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature
19 May 2014 – 31 May 2018	Contract 2	0	1	contravening the Water Pollution Control (General) Regulations
06 Nov 2013 – 31 May 2018	Contract 3	0	0	NA
16 Aug 2013 – 31 May 2018	Contract 5	0	0	NA
16 Aug 2013 – 31 May 2018	Contract 6	0	0	NA
15 Feb 2016 – 31 May 2018	Contract 7	0	0	NA
16 Aug 2013 – 31 May 2018	SS C505	0	0	NA
	Contract 2	0	1	NA
1 – 30 June 2018	Contract 3	0	0	NA
	Contract 4	0	0	NA
	Contract 6	0	0	NA
	Contract 7	0	0	NA
	SS C505	0	0	NA

Table 10-3 Statistical Summary of Environmental Prosecutions

Demosting Devial	Contract No	Environmental Prosecutions Statistics			
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature	
19 May 2014 – 31 May 2018	Contract 2	0	1	contravening the Water Pollution Control (General) Regulations	
06 Nov 2013 – 31 May 2018	Contract 3	0	0	NA	
16 Aug 2013 – 31 May 2018	Contract 5	0	0	NA	
16 Aug 2013 – 31 May 2018	Contract 6	0	0	NA	
15 Feb 2016 – 31 May 2018	Contract 7	0	0	NA	
16 Aug 2013 – 31 May 2018	SS C505	0	0	NA	
	Contract 2	0	1	NA	
	Contract 3	0	0	NA	
1 – 30 June 2018	Contract 4	0	0	NA	
	Contract 6	0	0	NA	
	Contract 7	0	0	NA	
	SS C505	0	0	NA	

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- 11.1.2 All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented by Contracts 2, 3, 4, 5, 6, 7 and Contract SS C505 in this Reporting Period are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures
Water Quality	• Wastewater to be treated by the wastewater treatment facilities i.e. sedimentation tank or similar facility before discharge.
Air Quality	 Maintain damp / wet surface on access road Low vehicular speed within the works areas. All vehicles must use wheel washing facility before off site Sprayed water during breaking works A cleaning truck was regularly performed on the public road to prevent fugitive dust emission
Noise	 Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday. Keep good maintenance of plants Place noisy plants away from residence or school Provide noise barriers or hoarding to enclose the noisy plants or works Shut down the plants when not in used.
Waste and Chemical Management	 On-site sorting prior to disposal Follow requirements and procedures of the "Trip-ticket System" Predict required quantity of concrete accurately Collect the unused fresh concrete at designated locations in the sites for subsequent disposal
General	The site was generally kept tidy and clean.

 Table 11-1
 Environmental Mitigation Measures

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016. Construction activities for other Contracts in the coming month are listed below:

Contract	2
----------	---

Contract 2	
Mid-Vent Portal	 Construction of Cut and Cover and backfilling activities
	Construction of adit enlargement internal structure
	• Stud tunnel internal structure and E&M installation
	Building fit out and E&M installation
	• Structure connecting adit tunnel and ventilation building
	Permanent drainage & underground utilities
North Portal	• Construction of retaining wall, permanent drainage, site formation and
	slip road
	• Tunnel backfilling, VE panel and E&M installation
	Construction of tunnel cross passage and internal structure
	• North ventilation building superstructure, internal structure and
	backfilling
	• Drainage cleansing and construction of temporary utility bridge across
	the mid-platform
South Portal	Waterproofing and lining activities inside the tunnel
	• Construction of tunnel cross passage, tunnel backfilling and E&M
	installation

	•	South ventilation building fit out and E&M installation Backfilling and construction of slip road Relocation of site office and water treatment system
Admin Building	•	Building fit out, permanent drainage and E&M installation and soft
		landscaping works

Contract 3

- Cable detection and trial trenches
- Remaining works on new Footbridge
- Noise barrier construction
- Road pavement works
- Water main laying works (on Grade and on bridge deck)
- Installation of Noise barrier steel column & panel, and sign gantry (on Grade and on bridge deck)
- Parapet Installation on bridge deck
- Road Drainage Works
- Construction of profile barrier & Planter wall on Bridge deck
- Stressing of external tendon
- Bitumen paving on bridge deck
- Installation of deck cell light inside the bridge deck
- Installation of movement joint on the bridge
- Construction of retaining wall
- Landscaping works

Contract 4

- E&M installation at Admin Building
- E&M installation at Ventilation Building
- E&A installation at OHVD in tunnel
- High mast erection
- Sign fabrication

Contract 6

- Bridge construction
- Tunnel Works
- Sewage Treatment Plant Construction
- Tunnel Ventilation Building Construction
- Slip Road/At-grade Road/Periphery Road Construction

Contract 7

- Profile barrier construction at Bridges A, B, D and E
- Construction of Façade and BMU at Bridge C
- Waterproofing and drainage works at Roof of Bridge C
- Drainage and watermains at perimeter road
- Bitumen pavement at perimeter road

Contract SS C505

- Building no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 constructions
- Constructions of Steel Canopies (Building no. 32, 33, 34 and 35)
- Constructions of Master Water Meter Room 1, 2 and 3 (Building no. 42, 43, 44)
- Tower crane operation
- Bridge 1 5 construction works including retaining wall, road and finishes works
- Underground drainage works, Road Works, CLP Cable laying and Landscaping
- Formwork and falsework for PTB's internal and External wall construction

- Construction PTB non-structural wall, Underground Drainage and Utilities, Fence Wall, On Grade Ground Slab and Paving
- PTB Southern Entrance Construction & Curtain Wall Installation
- Backfilling works
- PTB Major Plant Rooms ABWF & MEP Installation, Lift and Escalator Installation by NSC
- Integrated ABWF & MEP Works in PTB, Building no. 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 and 41
- Elevated Walkway E1, E2, E3 and E4 construction
- Integrated ABWF and MEP Works at Bridge C (C7 Portion)
- Tower Crane Dismantling Works

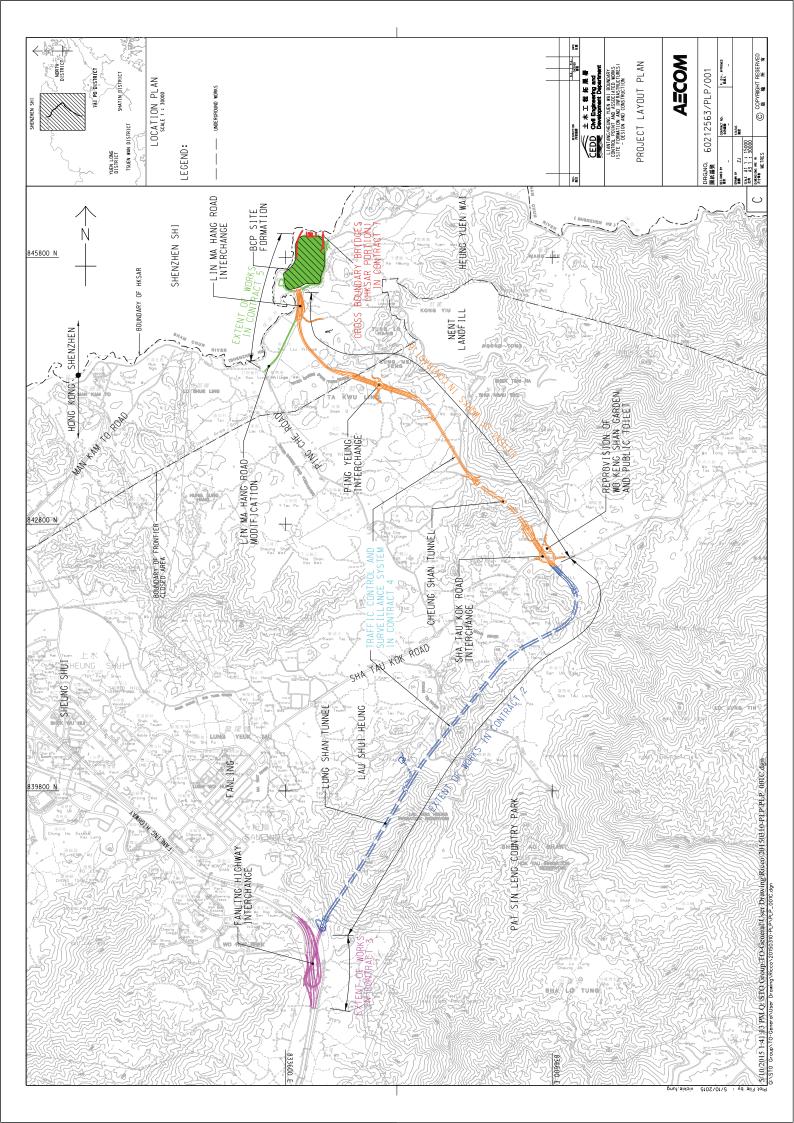
11.3 KEY ISSUES FOR THE COMING MONTH

- 11.3.1 Key issues to be considered in the coming month for Contracts 2, 3, 4, 6, 7 and SS C505 include:
 - Implementation of control measures for rainstorm;
 - Regular clearance of stagnant water during wet season;
 - Implementation of dust suppression measures at all times;
 - Potential wastewater quality impact due to surface runoff;
 - Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
 - Disposal of empty engine oil containers within site area;
 - Ensure dust suppression measures are implemented properly;
 - Sediment catch-pits and silt removal facilities should be regularly maintained;
 - Management of chemical wastes;
 - Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
 - Follow-up of improvement on general waste management issues; and
 - Implementation of construction noise preventative control measures

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

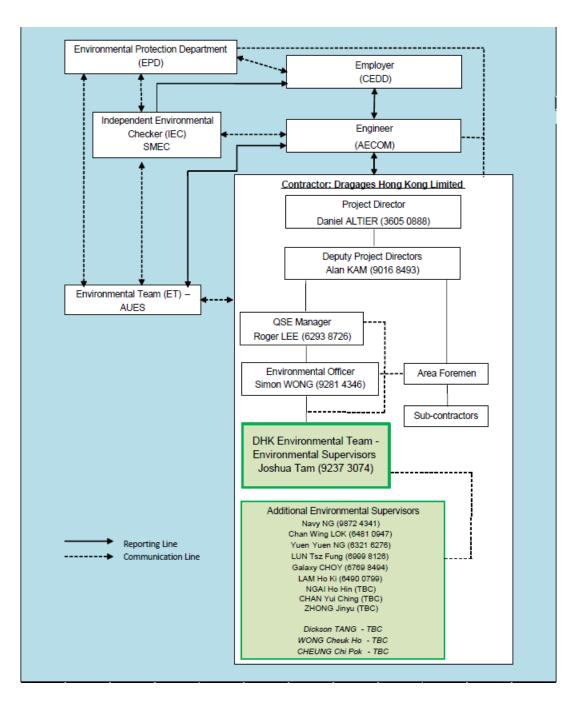
- 12.1.1 This is the **59th** monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **30 June 2018**.
- 12.1.2 For air quality monitoring, no 1-hour TSP and 24-hour TSP monitoring results triggered the Action or Limit Levels were recorded.
- 12.1.3 In the Reporting Period, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint which triggered an Action Level exceedance was recorded.
- 12.1.4 For water quality monitoring, a total of 37 AL/LL exceedances, namely 19 LL exceedance of turbidity and 18 AL/LL exceedances of SS were recorded. ES05 Investigation results revealed that the Contractor had properly implemented water quality mitigation measures such as well-maintained the wastewater treatment facility and covered the expose area with impervious sheet. It was concluded that all exceedances recorded at WM3x and WM4 and exceedances recorded at WM2A(a) during 6 to 15 June 2018 were related to the rainstorm or external inflow of muddy water and unlikely caused by the works under the Project. Besides, the investigation report for exceedances at WM2A(a) on 23, 25 and 26 June 2018 is still under review by IEC and the investigation result will be presented in next Monthly EM&A Report.
- 12.1.5 In this Reporting Period, no environmental complaints, environmental summons and prosecution were received under the EM&A programme.
- 12.1.6 During the Reporting Period, weekly joint site inspection by the RE, IEC, ET with the relevant Main-contractor were carried out for Contracts 2, 3, 4, 6 and 7 in accordance with the EM&A Manual stipulation. For Contract SS C505, weekly joint site inspection was carried out by the RE, IEC, ET and main-contractor whereas IEC performed monthly site inspection. No non-compliance observed during the site inspection.


12.2 RECOMMENDATIONS

- 12.2.1 During rainy season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- 12.2.2 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- 12.2.3 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- 12.2.4 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.
- 12.2.5 Furthermore, daily cleaning and weekly tidiness shall be properly performed and maintained. In addition, mosquito control should be kept to prevent mosquito breeding on site.

Appendix A

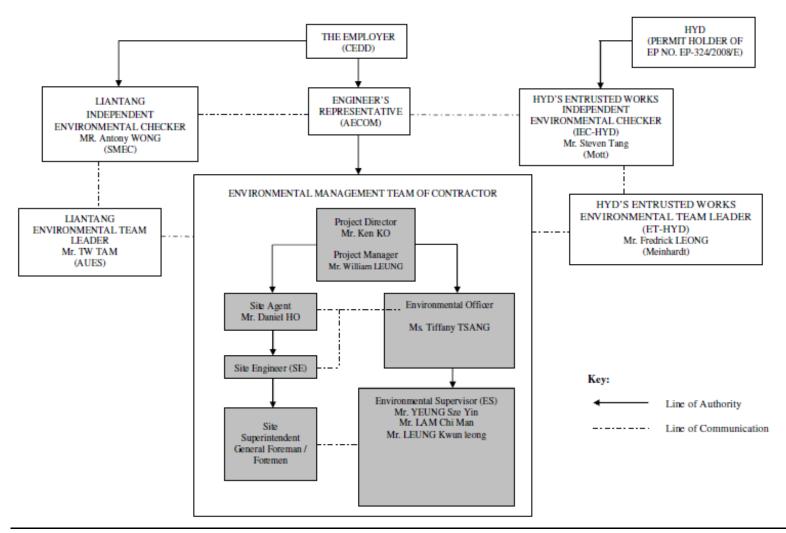
Layout plan of the Project



Appendix B

Organization Chart

Environmental Management Organization for Contract 2 - (CV/2012/08)



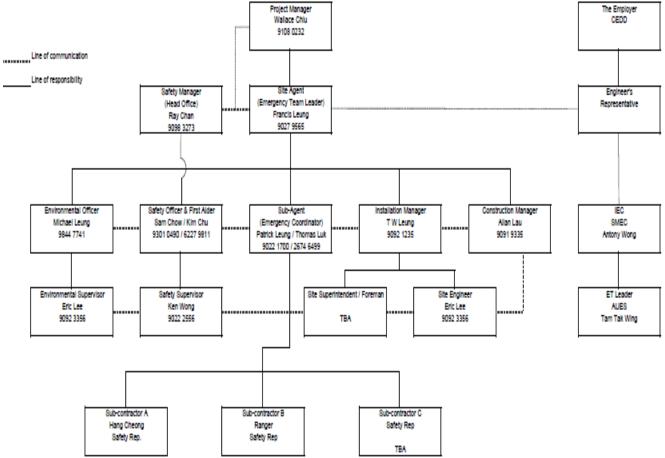
Contact Details of Key Personnel for Contract 2 - CV/2012/08
--

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Edwin Ching	2171 3301	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
DHK	Project Director	Daniel Altier	3605 0888	2171 3299
DHK	Deputy Project Manager	Alan Kam	9016 8493	2171 3299
DHK	QSE Manager	Roger Lee	6293 8726	2171 3299
DHK	Environmental Officer	Simon Wong	2171 3017	2171 3299
DHK	Environmental Supervisor	Joshua Tam	9237 3074	2171 3299
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. DHK(Main Contractor) –Dragages Hong Kong Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization for Contract 3 - CV/2012/09

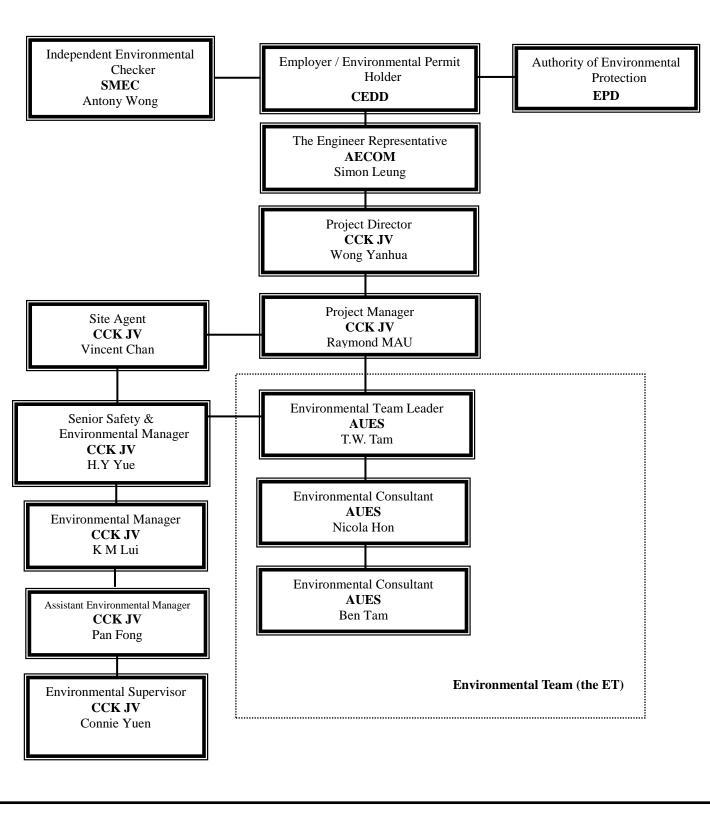

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3303	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Chun Wo	Project Director	Ken Ko	3758 8735	2638 7077
Chun Wo	Project Manager	William Leung	2638 6136	2638 7077
Chun Wo	Site Agent	Daniel Ho	2638 6144	2638 7077
Chun Wo Environmental Officer		Tiffany Tsang	2638 6151	2638 7077
Chun Wo Environmental supervisor		Frankie Leung	2638 6125	2638 7077
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 3 - CV/2012/09

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. Chun Wo (Main Contractor) – Chun Wo Construction Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization for Contract 4 - NE/2014/02



Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Leo Lai	2171 3310	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Siemens	Project Manager	Wallace Chiu	9108 0232	
Siemens	Site Agent	Francis Leung	9027 9565	
Siemens	Environmental Officer	Michael Leung	9844 7741	
Siemens	Environmental Supervisors	Eric Lee	9092 3356	
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

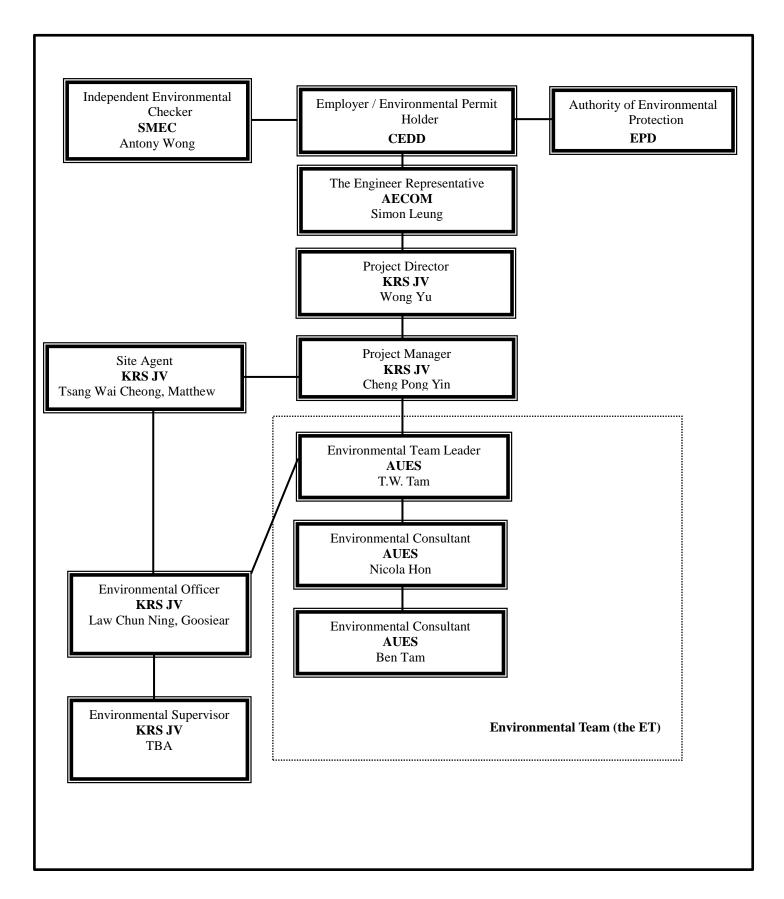
Contact Details of Key Personnel for Contract 4 - NE/2014/02

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. Siemens (Main Contractor) – Siemens Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

AUES

Environmental Management Organization - CV/2013/08



Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2251 0688	2251 0698
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
CCK JV	Project Director	Wang Yanhua	6190 4212	
CCK JV	Project Manager	Raymond Mau Sai-Wai	9011 5340	
CCK JV	Site Agent	Vincent Chan	9655 9404	
CCK JV	Senior Safety & Environmental Manager	H.Y. Yue	9185 8186	
CCK JV	Environmental Manager	K M Lui	51138223	
CCK JV	Assistant Environmental Manager	Pan Fong	9436 9432	
CCK JV	Environmental Supervisor	Connie Yuen	6316 6931	
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

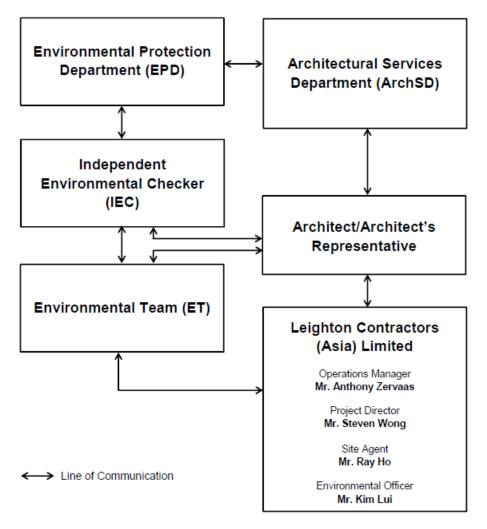
Contact Details of Key Personnel for Contract 6 - CV/2013/08

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. CCK JV (Main Contractor) – CRBE-CEC-Kaden Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

AUES

Environmental Management Organization -NE/2014/03


Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Kelvin lee	2251 0609	2251 0698
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
KRSJV	Project Director	Wong Yu	2682 6691	2682 2783
KRSJV	Project Manager	Cheng Pong Yin	9023 4821	2682 2783
KRSJV	Site Agent	Tsang Wai Cheong, Matthew	9705 7536	2682 2783
KRSJV	Environmental Officer	Law Chun Ning, Goosiear	9625 2381	2682 2783
KRSJV	Environmental Supervisor	TBA	6592 3084	2682 2783
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 7 – NE/2014/03

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. KRS JV (Main Contractor) –Kwan On-Richwell-SCG Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organigram

Environmental Management Organization for Contract SS C505

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
ArchSD	Works agent for the Development Bureau (DEVB)	Mr. William Cheng	2867 3904	2804 6805
Ronald Lu & Partners	ld Lu & Architect/ Architect's Mr. Just		3189 9272	2834 5442
SMEC	Independent Environmental Checker	Mr. Antony Wong	3995 8120	3995 8101
Leighton	Operation Manager	Mr. Antony Zervaas	2823 1433	2529 8784
Leighton	Project Director	Mr. Steven Wong	2858 1519	2858 1899
Leighton	Site Agent	Mr. Ray Ho	2858 1519	2858 1899
Leighton	Environmental Officer	Mr. Kim Lui	3973 1003	-
Leighton	Assistant Environmental Officer	Mr. Alex Liu	3973 0818	-
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract SS C505

Legend:

ArchSD (Project Proponent) – Architectural Services Department

Ronald Lu & Partners (Architect/ Architect's Representative) –Ronald Lu & Partners (Hong Kong) Ltd

Leighton (Main Contractor) – Leighton Contractors (Asia) Limited

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Appendix C

3-month rolling construction program

Contract 2

Tentative Three Months (June, July and Aug 2018) Construction Rolling Progam

Item	Construction Activites
1	Admin Bldg - Building fit out, permanent drainage and E&M installation and soft landscaping works.
2	Mid Vent Portal - Construction of C&C structure and backfilling activities
3	Mid Vent Portal - Construction of adit enlargement internal structure
4	Mid Vent Portal - Stud tunnel internal structure and E&M installation
5	Mid-Vent Portal - Building fit out and E&M installation
6	Mid Vent Portal - Structure connecting adit tunnel and ventilation building
7	Mid-Vent Portal - Permanent drainage & underground utilities
8	North Portal - Construction of retaining wall, permanent drainage, site formation and slip road
9	North Portal - Tunnel backfilling, VE panel and E&M installation
10	North Portal - Construction of tunnel cross passage and internal structure
11	North Portal - North ventilation building superstructure, internal structure and backfilling
12	North Portal - Drainage cleansing and construction of temporary utility bridge across the mid-platform
13	South Portal - Waterproofing and lining activities inside the tunnle
14	Sorth Portal - Construction of tunnel cross passage, tunnel backfilling and E&M installation
15	South Portal - South ventilation building fit out and E&M installation
16	South Portal - Backfilling and construction of slip road
17	South Portal - Relocation of site office and water treatement system

Contract 3

CEDD Contract No: CV/2012/09

Main Contractor: Chun Wo Construction Ltd

後和建築工程有限公司 CHUN WO CONSTRUCTION & ENGINEERING CO., LTD.

Tentative Three Months (June, July and August 2018) Construction Rolling Progam

Item	Construction Activites
1	Cable detection and trial trenches
2	Remaining works on new Footbridge
3	Noise barrier construction
4	Road pavement works
5	Water main laying works (on Grade and on bridge deck)
6	Installation of Noise barrier steel column & panel, and sign gantry (on Grade and on bridge deck)
7	Parapet Installation on bridge deck
8	Road Drainage Works
9	Construction of profile barrier & Planter wall on Bridge deck
10	Stressing of external tendon
11	Bitumen paving on bridge deck
12	Installation of deck cell light inside the bridge deck
13	Installation of movement joint on the bridge
14	Construction of retaining wall
15	Landscaping works
	<u> </u>

Contract 4

Site Information for EM&A Report

- Complaint Log

_

Date / Time	Location	Compliant Details	Contact Person & Telephone
Nil	Nil	Nil	Nil

- Updated Construction Program No Change

- Updated Environmental Licensing Status

Statutory Reference	Description	Permit /Reference No.	Status
EIAO	Environmental Permit	EP-381/2009	Valid
APCO	Notification of Construction Work	405353	Valid
WDO	Bill Account for disposal	7024973	Valid

Works undertaken during the Reporting Period (Jun 2018)

Item	Construction Activities
1	E&M installation at admin building
2	E&M installation at ventilation building
3	E&M installation at OHVD & tunnel

Works to be undertaken in the forthcoming month (From July 2018 to Aug 2018)

Item	Construction Activities
1	E&M installation at admin building
2	E&M installation at ventilation building
3	E&M installation at OHVD & tunnel
4	High mast erection
5	Sign fabrication

- Waste flow table

Refer to attachment

- Updated Environmental Organisation

Environmental personnel	Name	Telephone Number		
Environmental Officer	Michael Leung	9844 7741		
Environmental Supervisor(s)	Eric Lee	9790 2810		
Environmental Team Leader	T.W. Tam	2959 6059		
Independent Environmental Checker	Anthony Wong	3995 8120		

Contract 6

Tentative Three Months (June, July and August 2018) Construction Rolling Progam

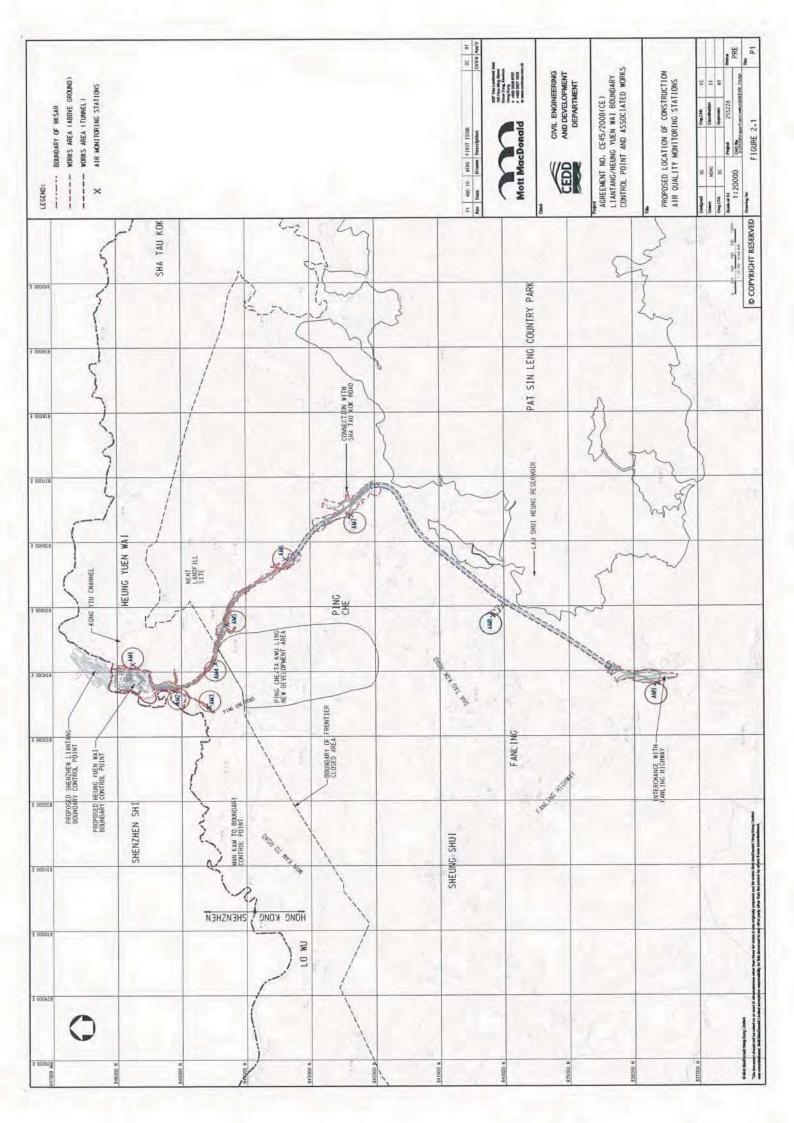
Item	Construction Activites								
1	Bridge Construction;								
	Tunneling Works;								
	Sewage Treatment Plant Construction;								
4	Tunnel Ventilation Buildings Construction;								
5	Slip Road/At-grade Road/Periphery Road Construction.								

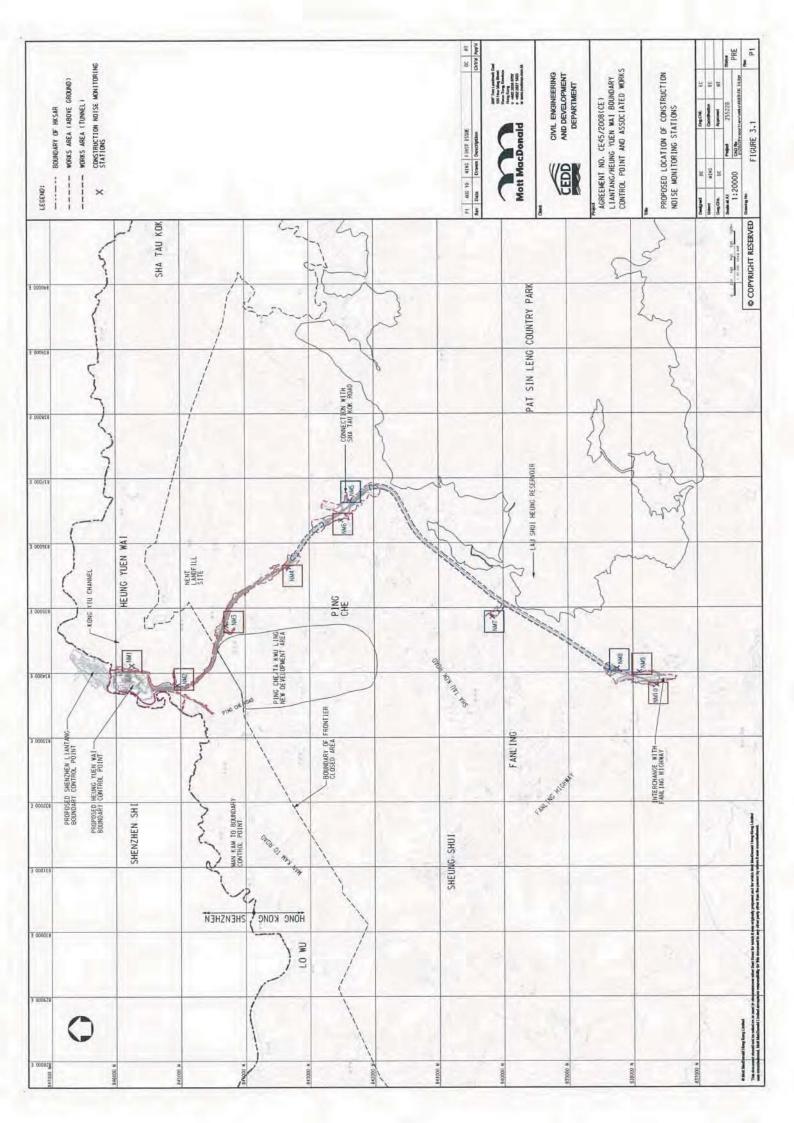
Contract 7

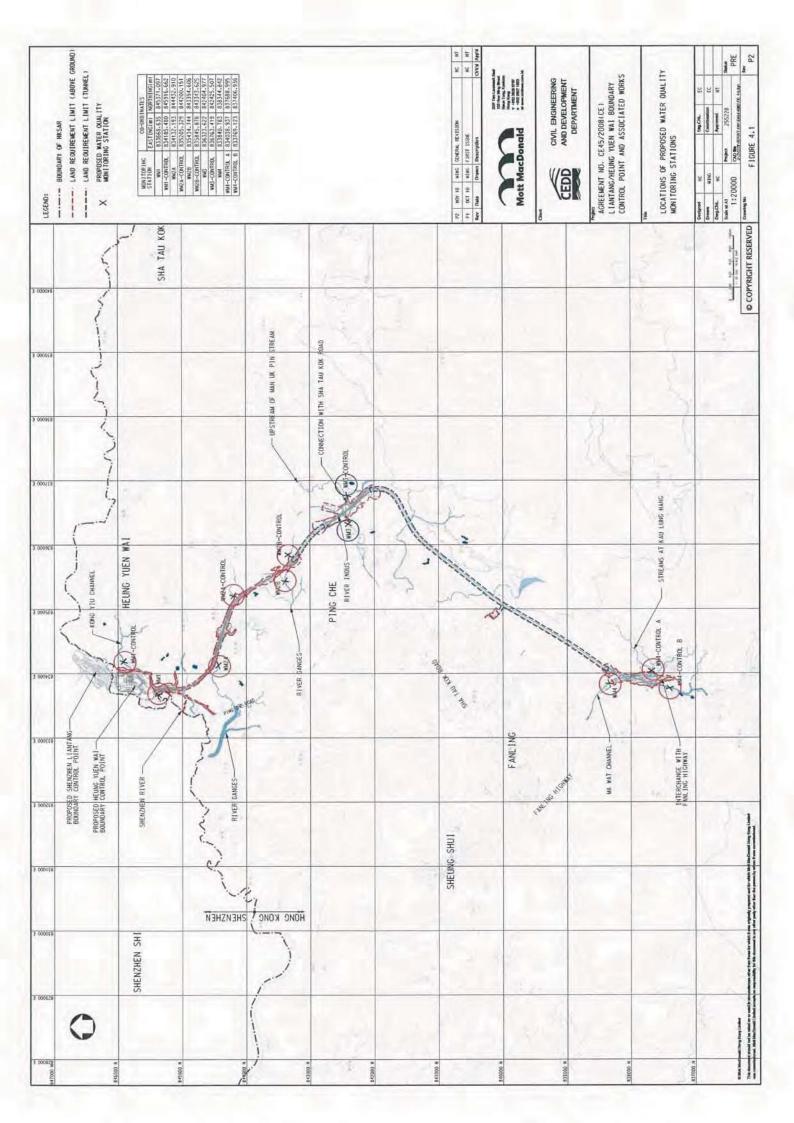
Tentative Three Months(June, July and August 2018) Construction Rolling Progam

Item	Construction Activites
1	Bridge A - Profile Barrier
2	Bridge B - Profile Barrier
	Bridge C - Façade and BMU at roof slab
4	Bridge C - Waterproofing & Drainage at roof slab
5	Bridge C - Green Roof System
6	Bridge D - Profile Barrier
7	Bridge D - Noise Barrier Construction
8	Bridge E - Profile Barrier
9	Bridge E - Noise Barrier Construction
	Perimeter Road - Drainage and Watermains
	Perimeter Road - Bitumen Pavement

Contract SS C505

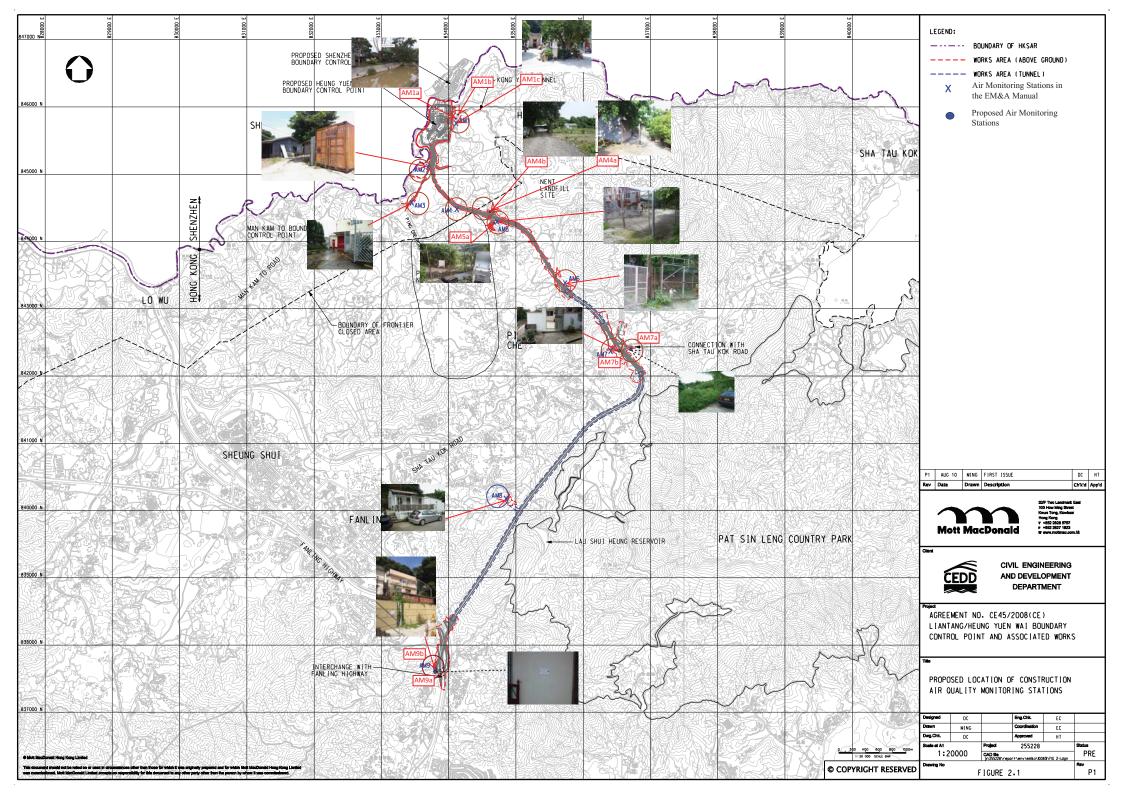

Tentative Three Months (June, July and August 2018) Construction Rolling Progam


Item	Construction Activites
1	Passenger Terminal Building (PTB) G/F - Structure Works, Backfiling & Drainage, Under Ground Utilities, Fence Wall and On Grade
-	Slab
2	PTB ABWF Works & Integrated MEP Installation - Nonstructure Wall Erection, Front/Back of House Area ABWF Works & MEP
	Installation, Curtain Wall Installation and Southern Entrance Construction
	PTB Major Plant Room ABWF Works & MEP Installation from G/F to 2/F, E&MF Major Plant Rooms ABWF Works & MEP Installation,
3	Lift & Escalator Installation, CLP Installation to Transformer Room, MVAC Vertical Connection and LPG Installation
4	
5	PTB M/F External Wall Structure & ABWF Works
6	PTB Roof & Upper Roof Roofing Works - Structure Works and Concrete Repair, Waterproofing, BMU System & Fall Arrest System, Soft and Hard Landscaping
7	PTB Podium Coach Canopy - Coach Canopy Construction & MEP Installation
8	PTB - Coach & Private Car Kiosks (Inbound / East) - Superstructure, ABWF Works, MEP Installation & End User Rooms
9	PTB - Private Car Examination Buildings and MXRVSS (Inbound / East) - Superstructure, ABWF works, MEP Installation & End User Rooms
10	C&ED Detector Dog Base - Integrated ABWF & MEP G/F & R/F Works
	HKPF Building and Observation Tower - Structures, External Works, Integrated ABWF & MEP Works, End User Rooms
12	Fire Station and Drill Tower - External Works, Integradted ABWF & MEP Works, End User Rooms / System
13	Cargo Examination Building (Inbound) - External Works, Integrated ABWF & MEP Works, G/F & 1/F End User Rooms
14	Cargo Examination Building (Outbound) - External Works, Integrated ABWF & MEP Works, G/F & 1/F End User Rooms
15	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) - Structures, External Works, Integrated ABWF & MEP Works, G/F & 1/F End User Rooms
16	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) - Structures, External Works and Integrated ABWF & MEP Works
17	MXRVSS (Inbound) - Structure Works, Integrated ABWF and MEP Works
18	MXRVSS (Outbound) - Structure Works, Integrated ABWF and MEP Works
19	GV Kiosk (Inbound) - Structures Works, On-Grade Slab Construction, Steel Structure Works, Integrated ABWF and MEP Works, End
15	User Rooms
20	GV Kiosk (Outbound) - Structures Works, On-Grade Slab Construction, Steel Structure Works, Integrated ABWF & MEP Works, End
-	User Rooms
	Public Toilets (Inbound) - Structure Works, Integrated ABWF and MEP Works
	Public Toilets (Outbound) - Structures Works, Integrated ABWF and MEP Works
	Disinsection Facilities (Inbound) - Structure Works, Integrated ABWF & MEP Works
	Disinsection Facilities (Outbound) - Substructure and Structure Works, Integrated ABWF & MEP Works
	Weigh Station - Structure Works, Integrated ABWF and MEP Works, End User Room Equipment Installation EUVSS & Monitoring Room - Structure Works, Integrated ABWF & MEP Works, End User Room Equipment Installation
	Refuse Collection Point - Integrated ABWF and MEP Works
	Traffic Control Office (Inbound) - Structure Works, Integrated ABWF and MEP Works
	Traffic Control Office (Outbound) - Structure Works, Integrated ABWF and MEP Works
	Inspection Post - Structure Works, Integrated ABWF and MEP Work
	Guard Booth (Inbound/Outbound/Vehicle Detention Area) - Structure Works, Integrated ABWF and MEP Works
32	Steel Canopies - Structure Works, Integrated ABWF and MEP Works
	Fire Hydrant Tank & Pump Room - Integrated ABWF and MEP Works
	Irrigation Pump Room - Integrated ABWF & MEP Works

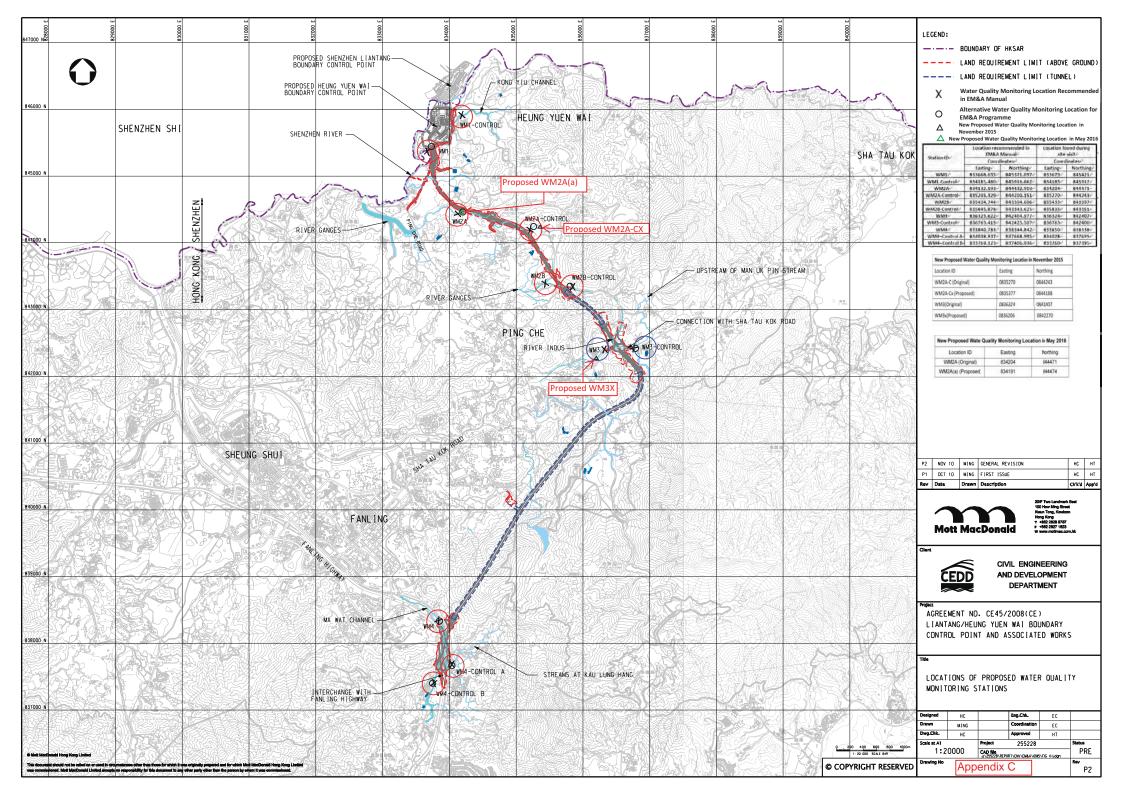


Appendix D

Designated Monitoring Locations as Recommended in the Approved EM&A Manual







Appendix E

Monitoring Locations for Impact Monitoring

Appendix F

Calibration Certificate of Monitoring Equipment and HOKLAS-accreditation Certificate of the Testing Laboratory

Location Location		ea at Tsun AM1c	g Yuen	Ha Village			Next Calibra	alibration: tion Date: echnician:		28/5/2018 28/7/2018 Eric
					C	ONDITIONS				
	Se	a Level I Temp	Pressure erature		1009 30.3		Corrected Pressure Temperature			756.75 303
					CALIB	RATION OR	IFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> Qstd Intercept ->		2.02017 -0.03691	
					C	ALIBRATION	I			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINE REGRES			
18 13 10 7 5	5.5 4.4 3.4 2.2 1.3	-6.7 -5.6 -4.6 -3.4 -2.5	12.2 10.0 8.0 5.6 3.8	1.728 1.567 1.403 1.177 0.973	51 45 40 32 26	50.44 44.51 39.56 31.65 25.72	Slope = Intercept = Corr. coeff. =	32.7488 -6.4736 0.9994		
Calculati Qstd = 1/: IC = I[Sq	m[Sqrt(H			d/Ta))-b]		60.00	FLOW RAT	E CHART		
	ected chai chart res rator Qsto ator Qstd al temper	rt respon- ponse l slope intercep ature dur	t ring cali	ibration (de		50.00 (j) 40.00 es wood se 30.00				
	equent ca	alculatio	n of sai	ration (mm mpler flow: b)	Hg)	Actral Control Part E		•		
m = samp b = samp I = chart 1 Tav = dai	oler interc response		ature			0.00	0 0 500		1 500	2000
Pav = dai		-				0.00	0 0.500 Standard Flow	.000 Rate (m3/min	1.500 I)	2.000

Location : Location I	_	House ne AM2	ear Lin N	Ma Hang Ro	oad		Date of Calibration: Next Calibration Date: Technician:	10/4/2018 10/6/2018 Fai So
					CO	NDITIONS		
	Se	ea Level I Temp	Pressure perature	· ,	1014.7 23.8		Corrected Pressure (mm Hg) Temperature (K)	761.025 297
					CALIBRA	ATION ORIF	ICE	
				Make-> Model-> Serial # ->	5025A]		02017 0.03691
					CAL	IBRATION		
Plate		H2O (R)	H20	Qstd	[(abort)	IC	LINEAR	
No. 18 13 10 7 5	(in) 6.1 4.9 3.6 2.5 1.5	(in) 6.1 4.9 3.6 2.5 1.5	(in) 12.2 9.8 7.2 5.0 3.0	(m3/min) 1.752 1.572 1.350 1.128 0.878	(chart) 53 47 41 36 28	corrected 53.14 47.13 41.11 36.10 28.08	REGRESSION Slope = 27.8827 Intercept = 3.8583 Corr. coeff. = 0.9982	
Calculatio Qstd = 1/r IC = I[Sq1	o ns : n[Sqrt(H	[20(Pa/Ps	td)(Tstd			60.00	FLOW RATE CHART	
Qstd = sta IC = corre I = actual m = calibr b = calibra	cted cha chart res ator Qst	rt respone ponse d slope				90.00 Actual chart response (IC) 30.00 20.00		•
				oration (de ation (mm		Chart resp	•	
For subse 1/m((I)[S	-			npler flow:		90.02 Gtra		
m = samp b = samp I = chart r	ler interc					0.00		
Tav = dail Pav = dail	y averag					0.000	0.500 1.000 1.5 Standard Flow Rate (m3/min)	2.000

Location : Location I		ı Ling Fiı AM3	e Servic	ce Station			Date of Calibration:10/4/2018Next Calibration Date:10/6/2018Technician:Fai So
	Se	ea Level I Temp	Pressure erature	. ,	CO 1014.7 23.8		Corrected Pressure (mm Hg) 761.025 Temperature (K) 297
					CALIBR	ATION ORI	FICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691
					CAL	IBRATION	I
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	6.2 4.8 3.8 2.4 1.2	6.2 4.8 3.8 2.4 1.2	(iii) 12.4 9.6 7.6 4.8 2.4	1.766 1.556 1.387 1.106 0.787	54 48 42 35 28	54.15 48.13 42.11 35.09 28.08	Slope = 26.7795 Intercept = 6.1535 Corr. coeff. = 0.9963
Calculatic Qstd = 1/r IC = I[Sqr	n[Sqrt(H			/Ta))-b]		60.00	FLOW RATE CHART
Qstd = sta IC = corre I = actual m = calibr b = calibra	cted cha chart res ator Qsto	rt respone ponse d slope				50.00 (C) 40.00 (C) 40.00	
Ta = actua	il temper	ature dur	ing calil	oration (de ation (mm	g K) Hg)	Actual chart response (IC) 00.05 actual chart response 00.05 actual chart response	
For subse 1/m((I)[S	-			npler flow:		Y 20.00	
m = samp b = samp I = chart restrictions for the samp of t	ler interc esponse	ept				10.00 0.00 0.000	0 0.500 1.000 1.500 2.000
Tav = dail Pav = dail		-					Standard Flow Rate (m3/min)

Location : Location I		ı Ha Villa AM4b	ige				Date of Calibration:10/4/2018Next Calibration Date:10/6/2018Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure erature	` ´	1014.7 23.8		Corrected Pressure (mm Hg) 761.025 Temperature (K) 297
					CALIBR	ATION ORI	FICE
				Make-> Model-> Serial # ->	5025A		Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691
					CAL	IBRATION	
Plate		H2O (R)	H20	Qstd	[(alcout)	IC	LINEAR
No. 18 13 10 7 5	(in) 6 4.7 3.7 2.4 1.4	(in) 6 4.7 3.7 2.4 1.4	(in) 12.0 9.4 7.4 4.8 2.8	(m3/min) 1.738 1.540 1.368 1.106 0.849	(chart) 62 55 50 42 31	corrected 62.17 55.15 50.13 42.11 31.08	REGRESSION Slope = 34.1193 Intercept = 3.0874 Corr. coeff. = 0.9974
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/T ow rate rt respond ponse d slope l intercep ature dur ure durin	a)] es ing calib g calibra n of san	pration (deg ation (mm apler flow:		Vertical chart response (IC) 00.05 00.06 00.05 0	FLOW RATE CHART
m = sampleb = sampleI = chart rrTav = dailPav = dail	ler slope ler interc esponse y averag	ept se tempera	ature	"		10.00 0.00 0.000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I	_	eung Villa AM5a	age Hou	se			Date of Calibration:10/4/2018Next Calibration Date:10/6/2018Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure erature	` ´	1014.7 23.8		Corrected Pressure (mm Hg) 761.025 Temperature (K) 297
					CALIBR	ATION ORI	FICE
				Make-> Model-> Serial # ->	5025A		Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691
					CAL	IBRATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	$ \begin{array}{c} (11) \\ 6.5 \\ 5.1 \\ 4 \\ 2.4 \\ 1.5 \\ \end{array} $	6.5 5.1 4 2.4 1.5	(iii) 13.0 10.2 8.0 4.8 3.0	1.808 1.603 1.422 1.106 0.878	50 43 37 28 23	50.13 43.12 37.10 28.08 23.06	Slope = 29.2106 Intercept = -3.5289 Corr. coeff. = 0.9969
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/Ta ow rate rt respond ponse d slope l intercept ature dur ure durin alculatio	a)] es ing calib g calibra n of san	pration (deg ation (mm apler flow:	g K)	40000 50.00 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 400000 400000 400000 400000 4000000 40000000000	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept te tempera				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ng Shan V AM6	Village H	House			Date of Calibration:10/4/2018Next Calibration Date:10/6/2018Technician:Fai So
					CO	NDITIONS	6
	Se	ea Level I Temp	Pressure perature	. ,	<u>1014.7</u> 23.8		Corrected Pressure (mm Hg) 761.025 Temperature (K) 297
					CALIBR	ATION OR	RIFICE
				Make-> Model-> Serial # ->	5025A		Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691
					CAL	IBRATIO	Ν
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR d REGRESSION
18 13 10 7 5	6 4.7 3.7 2.5 1.5	6 4.7 3.7 2.5 1.5	(III) 12.0 9.4 7.4 5.0 3.0	1.738 1.540 1.368 1.128 0.878	57 50 43 32 24	57.15 50.13 43.12 32.09 24.06	Slope = 39.4850 Intercept = -11.2216 Corr. coeff. = 0.9983
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/T ow rate rt respond ponse d slope intercept ature dur ure durin alculatio	a)] es t ing calib g calibra n of san	pration (deg ation (mm apler flow:	g K)	70.00 60.00 50.00 00.05 00.00 20.00	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	e tempera				10.00 0.00 0.00	00 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		House of AM7b	Loi Tur	ig Village			Date of Calibration: 10/4/2 Next Calibration Date: 10/6/2 Technician: Fa		
					COND	TIONS			
	Se	a Level I Temp	Pressure perature	. ,	1014.7 23.8		Corrected Pressure (mm Hg) 761. Temperature (K)	.025 297	
				C	ALIBRATI	ON ORIFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.0369		
					CALIBR	RATION			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION		
18 13 10 7 5	6.4 4.8 3.9 2.3 1.5	6.4 4.8 3.9 2.3 1.5	12.8 9.6 7.8 4.6 3.0	1.794 1.556 1.404 1.083 0.878	62 54 47 40 32	62.17 54.15 47.13 40.11 32.09	Slope = 31.8679 Intercept = 4.3254 Corr. coeff. = 0.9945		
Calculatic Qstd = 1/r		20(Pa/Ps	td)(Tstd	/Ta))-b]		70.00	FLOW RATE CHART		
Pstd = act	ndard flo acted char chart resp rator Qstd ator Qstd al temper- ual press equent ca	ow rate et respond ponse l slope intercep ature dur ure durin	es t ting calil g calibra n of san	pration (de, ation (mm apler flow:	Ца)	00.00 00.02 00.04 00.05 00.05 00.05 00.05 00.05 00.05			
m = samp b = samp	ler slope ler interc		////00)]-t))		10.00			
I = chart r Tav = dail Pav = dail	y average	-				0.000	0.500 1.000 1.500 2 Standard Flow Rate (m3/min)	.000	

Location :			age No.	4			Date of Calibration: 10/4/2018 Next Calibration Date: 10/6/2018		
Location I	D: 1	AM8					Next Calibration Date: 10/6/2018 Technician: Fai So		
					CONE	DITIONS			
	Sea		Pressure perature	, ,	<u>1014.7</u> 23.8]	Corrected Pressure (mm Hg)761.025Temperature (K)297		
				C	ALIBRAT	ION ORIFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691		
					CALIB	RATION			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION		
18 13 10 7 5	5.9 4.9 3.8 2.3 1.6	(iii) 5.9 4.9 3.8 2.3 1.6	(iii) 11.8 9.8 7.6 4.6 3.2	1.723 1.572 1.387 1.083 0.906	57 50 41 31 22	57.15 50.13 41.11 31.08 22.06	Slope = 41.7043 Intercept = -15.3326 Corr. coeff. = 0.9975		
Calculatio		1.0	5.2	0.200		22.00	FLOW RATE CHART		
Qstd = 1/r IC = I[Sq1				/Ta))-b]		60.00			
Qstd = sta IC = corre I = actual	ected chart	t respon	es			50.00 (j) s			
	ator Qstd i al tempera	intercep ture dur	ing calil	oration (de		40.00			
	equent ca	lculatio	n of san	ation (mm	ng)	90.00 Actual			
m = samp b = samp I = chart r	ler slope ler interce			,		0.00	0.500 1.000 1.500 2.000		
Tav = dail Pav = dail	ly average	-				0.000	Standard Flow Rate (m3/min)		

Location : Location I		a Po Vill AM9b	age Hoi	ise No. 80			Date of Calibration: Next Calibration Date: Technician:			
						CONDITIONS			Fai So	
	Se	ea Level I Temp	Pressure perature	. ,	1014. 23.			Corrected Pressure (mm Hg) Temperature (K)		
					CALIE	BRATION OR	IFICE			
				Make-> Model-> Serial # ->	5025A		Qstd Slope -> Qstd Intercept ->		2.02017 -0.03691	
					C	ALIBRATION	N			
Plate No. 18 13 10 7 5	H20 (L) (in) 6.3 5.1 3.8 2.3 1.5	H2O (R) (in) 6.3 5.1 3.8 2.3 1.5	H20 (in) 12.6 10.2 7.6 4.6 3.0	Qstd (m3/min) 1.780 1.603 1.387 1.083 0.878	I (chart) 55 48 41 35 27	IC corrected 55.15 48.13 41.11 35.09 27.07	LINE <u>REGRES</u> Slope = Intercept = Corr. coeff. =			
Calculatio Qstd = 1/r IC = I[Sqr	ons : n[Sqrt(Hi	20(Pa/Pst	td)(Tstd			60.00	FLOW RATE	E CHART	•	
	ected char chart resp rator Qstd ator Qstd al tempera	rt respone ponse l slope intercept ature duri	ing calib	oration (deg ation (mm I		50.00 (C) 40.00 30.00 30.00 20.00		•		
For subse 1/m((I)[S	-			npler flow:		20.00 10.00				
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interce response ly average	e tempera				0.00	0.500 1. Standard Flow F	.000 Rate (m3/min)	1.500 2.000)	

Location : Location I	_	House ne AM2	ear Lin I	Ma Hang R			Date of Calib Next Calibration Tech		9/6/2018 9/8/2018 Fai So
					CC	ONDITIONS			
	Se	a Level I Temp	Pressure erature	. ,	999.1 28.6]	Corrected Pressure (mm Temperature (K)	Hg)	749.325 302
					CALIBR	ATION ORI	FICE		
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691		
					CA	LIBRATION			
Plate		H2O (R)	H20	Qstd	Ι	IC	LINEAR		
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSIC		
18 13	5.5 4.3	5.5 4.3	11.0 8.6	1.639 1.451	50 44	49.35 43.43	-	2.9618 4.4771	
10	4.5 3.3	4.3 3.3	8.0 6.6	1.431	38	43.43 37.51	-	0.9996	
7	2.1	2.1	4.2	1.020	30	29.61		0.7770	
5	1.3	1.3	2.6	0.806	22	21.71			
Calculatic Qstd = 1/r IC = I[Sqr	n[Sqrt(H			/Ta))-b]		60.00	FLOW RATE CH	IART	
Qstd = sta						50.00		/	•
IC = corre I = actual m = calibr	chart res ator Qsto	ponse d slope				() 40.00			
	l temper	ature dur	ing cali	bration (de ation (mm		Actual chart response 00.05 00.07			
For subse 1/m((I)[S	-			npler flow:		Actual Ac	• • • • • • • • • • • • • • • • • • •		
m = sample b = sample	ler interc	ept				10.00			
I = chart r Tav = dail Pav = dail	y averag					0.00	0 0.500 1.000 Standard Flow Rate	1.500 (m3/min)	2.000

Location : Location I		u Ling Fir AM3	e Servic	ce Station			Date of Calibration:9/6/2018Next Calibration Date:9/8/2018Technician:Fai So
	Se	ea Level I Temp	Pressure erature	. ,	CO 999.1 28.6		Corrected Pressure (mm Hg) 749.325 Temperature (K) 302
				Make-> Model-> Serial # ->	TISCH 5025A		Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691
					CAL	IBRATION	Ν
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR d REGRESSION
18 13 10 7 5	5.5 4.4 3.4 2.3 1.3	5.5 4.4 3.4 2.3 1.3	(iii) 11.0 8.8 6.8 4.6 2.6	1.639 1.468 1.292 1.066 0.806	50 46 40 34 26	49.35 45.40 39.48 33.56 25.66	Slope = 28.6872 Intercept = 2.7120 Corr. coeff. = 0.9990
Calculatic Qstd = 1/r IC = I[Sqr	n[Sqrt(H			/Ta))-b]		60.00	FLOW RATE CHART
Qstd = sta IC = corre I = actual m = calibr b = calibra	cted cha chart res ator Qsto	rt respone ponse d slope				50.00 (0) 40.00 bouse	
				oration (de ation (mm	g K) Hg)	Actual chart response (IC) 00.05 00.02	
For subse 1/m((I)[S	-			npler flow:		20.00 Y	
m = samp b = samp	-					10.00	
I = chart r Tav = dail Pav = dail	y averag	-				0.00	00 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ı Ha Villa AM4b	ige				Date of Calibration:9/6/201Next Calibration Date:9/8/201Technician:Fai S	18
					CO	NDITIONS		
	Se	ea Level I Temp	Pressure erature	` ´	999.1 28.6		Corrected Pressure (mm Hg) 749.32 Temperature (K) 30	
					CALIBRA	ATION ORIF	FICE	
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691	
					CAL	IBRATION		
Plate	. ,	H2O (R)	H20	Qstd	[(alcout)	IC	LINEAR	
No. 18 13 10 7 5	(in) 5.5 4.8 3.8 2.2 1.3	(in) 5.5 4.8 3.8 2.2 1.3	(in) 11.0 9.6 7.6 4.4 2.6	(m3/min) 1.639 1.532 1.365 1.043 0.806	(chart) 52 46 40 32 24	corrected 51.32 45.40 39.48 31.58 23.69	$\frac{\text{REGRESSION}}{\text{Slope} = 31.4046}$ $\text{Intercept} = -1.8086$ $\text{Corr. coeff.} = 0.9932$	
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo ccted cha chart res rator Qsto ator Qsto ator Qsto al temper ual press	d)(Tstd/Ta ow rate rt respond ponse d slope l intercept ature dur ure durin alculatio	a)] es ing calib g calibra n of san	pration (deg ation (mm apler flow:	g K) Hg)	Actrial chart response (C)	FLOW RATE CHART	
m = samp b = samp I = chart r Tav = dail Pav = dail	ler slope ler interc esponse y averag	ept se tempera	ature			0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)	

Location : Location I	_	eung Villa AM5a	age Hou	se			Date of Calibration:9/6/2018Next Calibration Date:9/8/2018Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure perature	` ´	999.1 28.6		Corrected Pressure (mm Hg)749.325Temperature (K)302
					CALIBR	ATION ORIF	ICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691
					CAL	IBRATION	
Plate		H2O (R)	H20	Qstd	Ι	IC	LINEAR
No. 18 13 10 7 5	(in) 5.8 4.9 3.4 2.1 1.4	(in) 5.8 4.9 3.4 2.1 1.4	(in) 11.6 9.8 6.8 4.2 2.8	(m3/min) 1.682 1.548 1.292 1.020 0.836	(chart) 42 38 30 22 18	corrected 41.45 37.51 29.61 21.71 17.77	$\frac{\text{REGRESSION}}{\text{Slope} = 28.4657}$ $\text{Intercept} = -6.6993$ $\text{Corr. coeff.} = 0.9986$
Pstd = act <i>For subse</i> 1/m((I)[S	n[Sqrt(H t(Pa/Psto ndard flo ected cha chart res rator Qsto ator Qsto ator Qsto al temper ual press equent c Sqrt(298/	d)(Tstd/T ow rate rt respond ponse d slope l intercept ature dur ure durin alculation Tav)(Pav	a)] es t ing calit g calibra n of san	pration (deg ation (mm apler flow:		50.00 40.00 30.00 20.00 10.00	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse ly averag	ept te tempera				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ng Shan V AM6	Village H	House			Date of Calibration:9/6/2018Next Calibration Date:9/8/2018Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure perature	· /	999.1 28.6		Corrected Pressure (mm Hg) 749.325 Temperature (K) 302
					CALIBR	ATION ORI	FICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691
					CAL	IBRATION	
Plate No.	H20 (L) (in)	H2O (R)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	$ \begin{array}{c} (11)\\ 5.4\\ 4.2\\ 3.2\\ 2\\ 1.3 \end{array} $	(in) 5.4 4.2 3.2 2 1.3	$ \begin{array}{c} (11)\\ 10.8\\ 8.4\\ 6.4\\ 4.0\\ 2.6\\ \end{array} $	(m3/mm) 1.624 1.434 1.254 0.995 0.806	54 46 42 30 24	53.30 45.40 41.45 29.61 23.69	Slope = 36.3047 Intercept = -5.7026 Corr. coeff. = 0.9963
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/T ow rate rt respond ponse d slope l intercept ature dur ure durin	a)] es t ing calit g calibra n of san	pration (deg ation (mm n pler flow:	g K)	Actual chart response (IC) 50.00 40.00 0.00	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept te tempera				10.00 0.00 0.000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I	-	House of AM7b	Loi Tur	ig Village			Date of Calibration: 9/6/2018 Next Calibration Date: 9/8/2018 Technician: Fai So		
					COND	TIONS			
	Se	a Level I Temp	Pressure perature	. ,	999.1 28.6]	Corrected Pressure (mm Hg) 749.325 Temperature (K) 302		
				C	ALIBRATI	ON ORIFICE	E		
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691		
					CALIBR	RATION			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION		
18 13 10 7 5	5.5 4.3 3.4 2.2 1.3	5.5 4.3 3.4 2.2 1.3	11.0 8.6 6.8 4.4 2.6	1.639 1.451 1.292 1.043 0.806	56 50 43 33 25	55.27 49.35 42.44 32.57 24.68	Slope = 37.5797 Intercept = -5.9717 Corr. coeff. = 0.9989		
Calculatio Qstd = 1/r IC = I[Squ	o ns : n[Sqrt(H	20(Pa/Ps	td)(Tstd			60.00	FLOW RATE CHART		
Pstd = act	ected char chart resp rator Qsto ator Qstd al temper ual presso	t respond ponse l slope intercep ature dur ure durin	t ing calil g calibra	pration (de, ation (mm ppler flow:	. ,	00.05 00.04 00.04 00.05 Vectoral chart vectoral			
1/m((I)[S	-			-		10.00			
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interco esponse ly average	e temper				0.00	0 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)		

Location :			age No.	4			Date of Calibration: 9/6/2018		
Location I	D: 1	AM8					Next Calibration Date: 9/8/2018 Technician: Fai So		
					CONE	DITIONS			
	Sea		Pressure perature	, ,	999.1 28.6		Corrected Pressure (mm Hg) 749.325 Temperature (K) 302		
				C	ALIBRAT	ION ORIFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691		
					CALIB	RATION			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION		
18 13 10 7 5	5.7 4.6 3.4 2.1 1.4	5.7 4.6 3.4 2.1 1.4	(iii) 11.4 9.2 6.8 4.2 2.8	1.668 1.500 1.292 1.020 0.836	58 50 44 32 22	57.25 49.35 43.43 31.58 21.71	$\frac{d}{Slope} = 41.4013$ Intercept = -11.6316 Corr. coeff. = 0.9960		
Calculatio		1.1	2.0	0.050		21.71	FLOW RATE CHART		
Qstd = 1/r IC = I[Sqr	t(Pa/Pstd)	(Tstd/T		/Ta))-b]		60.00			
Qstd = sta IC = corre I = actual m = calibr	cted chart chart resp	respon onse	es			50.00 (C)			
	al tempera	ture dur	ing calil	oration (deg ation (mm		40.00 40.00 a chart responsed and chart respon			
For subse 1/m((I)[S	-			npler flow:		Actual 20.00			
m = samp b = samp I = chart r Tav = dail Pav = dail	ler slope ler interce esponse ly average	pt temper	ature	,		0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)		

Location : Nam Wa Po Village House No. 80 Location ID : AM9b		Next Calibration Date: 9/8/			9/6/2018 9/8/2018 Fai So
	CONDITIONS				
Sea Level Pressure (hPa)999Temperature (°C)28	<u>9.1</u> 3.6	Corrected Pressure (mm Hg) Temperature (K)			749.325 302
CAL	IBRATION ORI	FICE			
Make-> TISCH Model-> 5025A Serial # -> 1612		Qstd Slope -> Qstd Intercept ->		2.02017 0.03691	
	CALIBRATION	l			
Plate H20 (L)H2O (R) H20 Qstd I No. (in) (in) (in) (m3/min) (chart 18 5.5 5.5 11.0 1.639 53 13 4.2 4.2 8.4 1.434 46 10 3.2 3.2 6.4 1.254 41 7 2 2 4.0 0.995 31 5 1.3 1.3 2.6 0.806 22	IC corrected 52.31 45.40 40.47 30.60 21.71	LINE. <u>REGRES</u> Slope = Intercept = Corr. coeff. =			
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]	60.00	FLOW RATE	CHART		
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow:	50.00 Wetrial chart response (C) 300.00 20.00 20.00		*		
<pre>1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure</pre>	0.00	0.500 1. Standard Flow R		1.500	2.000

RECALIBRATION DUE DATE: February 13, 2019

Environmental Certificate of Calibration

			Calibration	Certificatio	on Informat	ion			
Cal. Date:	February 13, 2018 Rootsm			meter S/N:	438320	3320 Ta: 293		°К	
Operator:	Jim Tisch	Tisch				Pa:	763.3	mm Hg	
Calibration	Model #:	TE-5025A	Calil	prator S/N:	1612				
			Mal Plant	A) (- 1	ATI	AD	A11		
	Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)		
	1	1	2	(113)	1.3970	3.2	2.00		
	2	3	4	- 1	1.0000	6.3	4.00		
	3	5	6	1	0.8900	7.9	5.00		
	4	7	8	1	0.8440	8.7	5.50		
	5	9	10	1	0.7010	12.6	8.00		
				Data Tabula	tion				
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$			Qa	$\sqrt{\Delta H(Ta/Pa)}$		
	(m3)	(x-axis)	(y-ax	(is)	Va	(x-axis)	(y-axis)		
	1.0172	0.7281	1.42	93	0.9958	0.7128	0.8762		
	1.0130	1.0130	2.0213		0.9917	0.9917	1.2392		
	1.0109	1.1358	2.2599		0.9896	1.1120	1.3854		
	1.0098	1.1964	2.37	A PERSON NEW YORK OF THE PARTY	0.9886	1.1713	1.4530		
	1.0046	1.4331	2.85		0.9835	1.4030 m=	1.7524 1.26500	4	
	QSTD	m= b=			QA	b=	-0.02263	1	
	QSID	r=	0.999		QA	r=	0.99988		
				Calculatio	ns			1	
	Vstd=	∆Vol((Pa-∆P)/Pstd)(Tstd/T		Va=	1			
	Qstd=	Qstd= Vstd/∆Time				Qa= Va/ATime			
			For subsequ	uent flow ra	ate calculations:			-	
	Qstd= $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$				Qa= $1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$				
	Standard	Conditions							
Tstd		CONTRACTOR AND A CONTRACTOR OF A DATA OF			RECALIBRATION				
Pstd	1	mm Hg			LIS FPA rec	ommends a	nnual recalibrati	on per 1999	
Key ΔH: calibrator manometer reading (in H2O)					US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51,				
ΔP : rootsmeter manometer reading (in H2O)					Appendix B to Part 50, Reference Method for the				
Ta: actual a	bsolute tem	perature (°K)		Determination of Suspended Particulate Matter in				
Pa: actual barometric pressure (mm Hg)					1		ere, 9.2.17, page		
b: intercept	t								
m: slope									

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.cor TOLL FREE: (877)263-761(FAX: (513)467-900

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	2X6145
Equipment Ref:	EQ105
Job Order	HK1815073

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	1 December 2017

Equipment Verification Results:

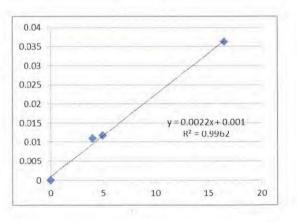
Testing Date:

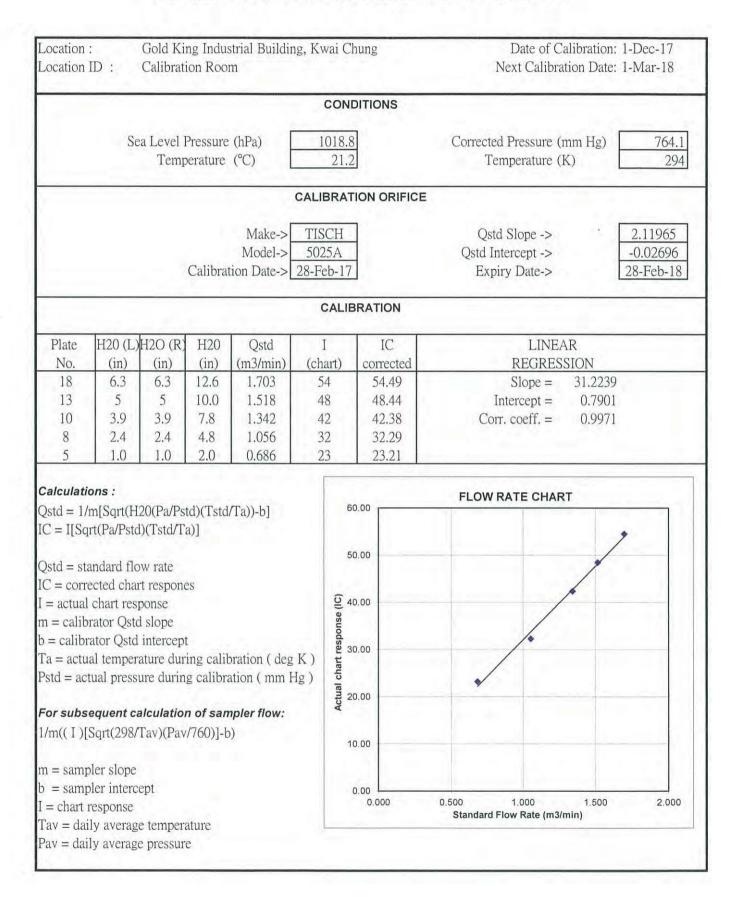
5 January 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	10:27 ~ 12:34	19.3	1015.3	0.011	511	4.0
2hr01min	12:38 ~ 14:39	19.3	1015.3	0.012	598	4.9
2hr08min	14:42 ~ 16:50	19.3	1015.3	0.036	2111	16.5

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) <u>583 (CPM)</u> 583 (CPM)

Linear Regression of Y or X


Slope (K-factor):	0.0022		
Correlation Coefficient	0.9981		
Date of Issue	9 January 2018		


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator : M	artin Li	Signature :	the	Date :	9 January 2018
QC Reviewer : _	Ben Tam	Signature :	\$6	Date : _	9 January 2018

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor				
Manufacturer:	Sibata LD-3B				
Serial No.	366409				
Equipment Ref:	EQ109				
Job Order	HK1815078				

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	1 December 2017

Equipment Verification Results:

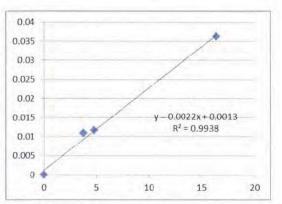
Testing Date:

5 January 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	10:27 ~ 12:34	19.3	1015.3	0.011	474	3.7
2hr01min	12:38 ~ 14:39	19.3	1015.3	0.012	577	4.8
2hr08min	14:42 ~ 16:50	19.3	1015.3	0.036	2097	16.4

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 520 (CPM) 521 (CPM)

Linear Regression of Y or X


Slope (K-factor):	0.0022		
Correlation Coefficient	0.9967		
Date of Issue	9 January 2018		

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor				
Manufacturer:	Sibata LD-3B				
Serial No.	366410				
Equipment Ref:	EQ110				
Job Order	HK1815072				

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	1
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	1 December 2017	

Equipment Verification Results:

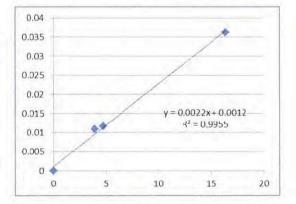
Testing Date:

5 January 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	10:27 ~ 12:34	19.3	1015.3	0.011	498	3.9
2hr01min	12:38 ~ 14:39	19.3	1015.3	0.012	571	4.7
2hr08min	14:42 ~ 16:50	19.3	1015.3	0.036	2095	16.4

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 670 (CPM) 669 (CPM)

Linear Regression of Y or X


Slope (K-factor):	0.0022		
Correlation Coefficient	0.9977		
Date of Issue	9 January 2018		

1.12

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring *If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Location 1		Gold Kir Calibrati	1.00	strial Buildin m		Date of Calibra ext Calibration I				
						CONDI	TIONS			
	Se	ea Level F Temp	Pressure perature		1	018.8 21.2			Pressure (mm H perature (K)	Ig) 764.1 294
					CALI	BRATIC	ON ORIFICE			1100
		-7.8	Calibra	Make-> Model-> tion Date->	502	SCH 25A eb-17	5A Qstd Intercept -> -0.02			2.11965 -0.02696 28-Feb-18
		1			(CALIBR	ATION			
Plate No. 18 13 10 8 5	H20 (L) (in) 6.3 5 3.9 2.4 1.0	H2O (R) (in) 6.3 5 3.9 2.4 1.0	H20 (in) 12.6 10.0 7.8 4.8 2.0	Qstd (m3/min) 1.703 1.518 1.342 1.056 0.686	(cha 5- 4 4 3	54	IC corrected 54.49 48.44 42.38 32.29 23.21	Inte	ercept = 0.7	1 2239 7901 9971
Pstd = act	m[Sqrt(H andard flc ected chau chart resp orator Qstd al temper tual press equent ca Sqrt(298/ pler slope	d)(Tstd/Ta ow rate art respone sponse d slope l intercept rature during sure during alculation /Tav)(Pav.	a)] es t ring calibra n of san	bration (deg ration (mm F mpler flow:		60.00 50.00 50.00 40.00 30.00 90.00 10.00 0.00		FLOW RA	ATE CHART	
I = chart 1 Tav = dai Pav = dai	response ily averag	ge tempera			5		0.000	0.500 Standard Flo	1.000 1. ow Rate (m3/min)	500 2.000

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location Location		Gold Kin Calibrati			Date of Calibrati t Calibration Da					
						CONDITI	ONS			-
Sea Level Pressure (hPa) 1 Temperature (°C)									ressure (mm Hg erature (K)	2) 764.1 294
					CALIE	BRATION	ORIFICE			
Make-> TIS Model-> 502 Calibration Date-> 28-Fe							25A Qstd Intercept -> -0.026			2.11965 -0.02696 28-Feb-18
					C	CALIBRA	TION			
Plate No. 18	H20 (L) (in) 6.3	H2O (R) (in) 6.3	H20 (in) 12.6	Qstd (m3/min) 1.703	I (ch: 5	art) co	IC rrected 54.49		LINEAR REGRESSION	239
13 10 8 5	5 3.9 2.4 1.0	5 3.9 2.4 1.0	10.0 7.8 4.8 2.0	1.518 1.342 1.056 0.686	4	48 48.44 42 42.38 32 32.29		Intercept = 0.7901 Corr. coeff. = 0.9971		
IC = I[Sq $Qstd = sta$ $IC = corrected and a corrected and$	m[Sqrt(H rt(Pa/Psto andard flo ected chai chart res rator Qsto ator Qsto al temper tual press equent c a Sqrt(298/	d)(Tstd/T; ow rate rt respone ponse d slope intercept ature dur ure durin	a)] es t ing calil g calibr n of san	oration (deg ation (mm F npler flow:	10 C 10 C	60.00 50.00 40.00 30.00 90.00 90.00 10.00		FLOW RAT	TE CHART	/
m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure					0.00 0.	000		.000 1.50 Rate (m3/min)	00 2.000	

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:	Laser Dust monitor				
Manufacturer:	Sibata LD-3B				
Serial No.	3Y6503				
Equipment Ref:	EQ112				
Job Order	HK1815077				

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	1 December 2017

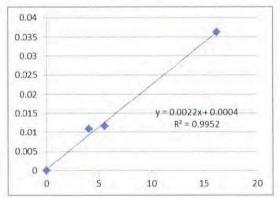
Equipment Verification Results:

Testing Date:

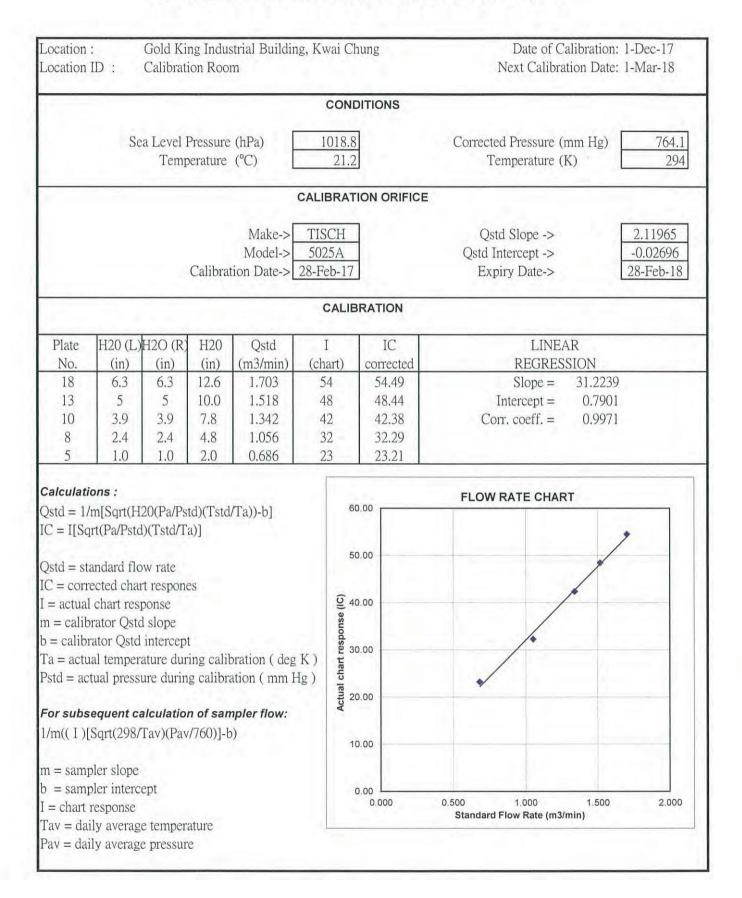
5 January 2018

Hour Time		Time Mean Temp °C		Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)	
2hr07min	10:27 ~ 12:34	19.3	1015.3	0.011	521	4.1	
2hr01min	12:38 ~ 14:39	19.3	1015.3	0.012	674	5.6	
2hr08min	14:42 ~ 16:50	19.3	1015.3	0.036	2077	16.3	

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 661 (CPM) 661 (CPM)


Linear Regression of Y or X

Slope (K-factor):	0.0022			
Correlation Coefficient	0.9976			
Date of Issue	9 January 2018			


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring *If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

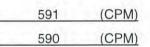
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6505
Equipment Ref:	EQ114
Job Order	HK1815074

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	1 December 2017	


Equipment Verification Results:

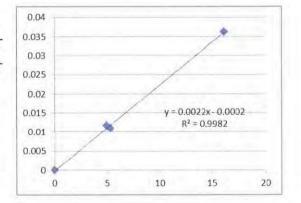
Testing Date:

5 January 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	10:27 ~ 12:34	19.3	1015.3	0.011	677	5.3
2hr01min	12:38 ~ 14:39	19.3	1015.3	0.012	601	5.0
2hr08min	14:42 ~ 16:50	19.3	1015.3	0.036	2064	16.2

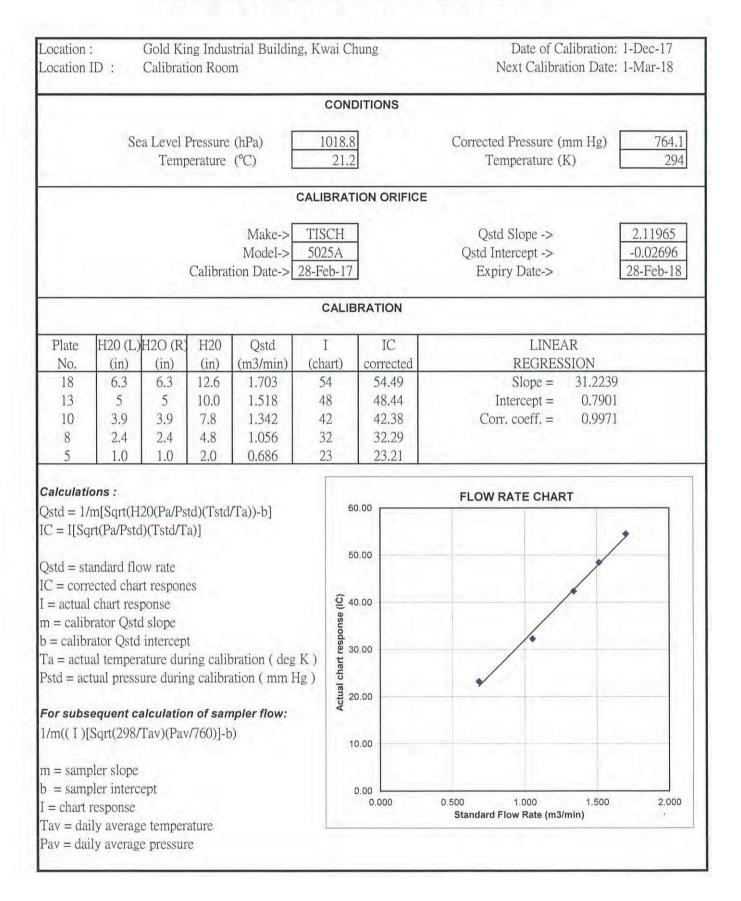
Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X


Slope (K-factor):	
Correlation Coefficient	
Date of Issue	

_	0.0022
	0.9991
2	9 January 2018

Remarks:


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring *If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Certificate No. : C174096 證書編號

ITEM TESTED / 送檢項目		(Job No. / 序引編號: IC17-0924)	Date of Receipt / 收件日期: 14 July 2017
Description / 儀器名稱 :		Integrating Sound Level Meter (EQ008)	
Manufacturer / 製造商 :	:	Brüel & Kjær	
Model No. / 型號	:	2238	
Serial No. / 編號	:	2285690	
Supplied By / 委託者 :	:	Action-United Environmental Services and C	onsulting
		Unit A, 20/F., Gold King Industrial Building,	
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.	
TEST CONDITIONS / 漢	訓討	條件	

Temperature / 溫度 : $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓 • -----

Relative Humidity / 相對濕度 : $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

22 July 2017 DATE OF TEST / 測試日期

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

	A	
	will.	_
,	H T Wong	

Technical Officer

K C/Lee Engineer

Certified By 核證

Date of Issue 簽發日期

1

25 July 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory constantion Engineering Engineering Canonation & resting Eaboratory (constant) - Resting Shan Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kong 師創工程有限公司 - 校正及後測實驗所 cons 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/

Website/網山- www.suncreation.com

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C174096 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281 Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator Certificate No. C170048 PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Self-calibration

	UUT S	Setting	Applied	Value	UUT	
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	93.8

6.1.1.2 After Self-calibration

	UUT	Setting		Applied	d Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.1	± 0.7

6.1.2 Linearity

	UU	Г Setting	Applied	d Value	UUT				
Range	Parameter	Frequency	Time	Level	Freq.	Reading			
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)			
50 - 130	L _{AFP}	A	F	94.00	1	94.1 (Ref.)			
				104.00		104.0			
				114.00		114.0			

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lanc, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所

c/o 香港新界屯門與安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C174096 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT Setting				Applied Value		IEC 60651
Range	Parameter	Frequency	Time	Time Level		Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.1	Ref.
	L _{ASP}		S			94.1	± 0.1
	L _{AIP}		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	UUT Setting				Applied Value		IEC 60651
Range	Parameter	Frequency	Time	Level	Level Burst		Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	L _{AFP}	А	F	106.0	Continuous	106.0	Ref.
	L _{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

		Setting		Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L _{AFP}	А	F	94.00	31.5 Hz	54.7	-39.4 ± 1.5
					63 Hz	67.9	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5 ; -3.0)
					12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

ion Creation Lightering Enniced Constraints Constraints Laboratory Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate No. : C174096 證書編號

6.3.2 C-Weighting

		Setting		Applie	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L _{CFP}	С	F	94.00	31.5 Hz	91.1	-3.0 ± 1.5
					63 Hz	93.2	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	94.0	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	91.0	-3.0 (+1.5 ; -3.0)
		•			12.5 kHz	87.8	-6.2 (+3.0 ; -6.0)

6.4 Time Averaging

UUT Setting					A		UUT	IEC 60804		
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
30 - 110	L _{Aeq}	A	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						$1/10^{2}$		90	90.1	± 0.5
			60 sec.			$1/10^{3}$		80	79.8	± 1.0
			5 min.			1/104		70	69.8	± 1.0

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812706

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

Uncertainties of Applied Value :	250 Hz - 500 Hz	: ± 0.30 dB : ± 0.20 dB
----------------------------------	-----------------	----------------------------

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No. : C174098 證書編號

ITEM TESTED / 送檢項目	(Job No. / 序引編號: IC17-0924)	Date of Receipt / 收件日期: 14 July 2017
Description / 儀器名稱 :	Integrating Sound Level Meter (EQ010)	
Manufacturer / 製造商 :	Brüel & Kjær	
Model No. / 型號 :	2238	
Serial No. / 編號 :	2285721	
Supplied By / 委託者 :	Action-United Environmental Services and	d Consulting
	Unit A, 20/F., Gold King Industrial Buildi	ng,
	35-41 Tai Lin Pai Road, Kwai Chung, N.7	Γ.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓 : ---

Relative Humidity / 相對濕度 : $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 22 July 2017 •

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

Date of Issue Certified By 核證 K 🕻 Lee Engineer

簽發日期

:

25 July 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate No. : C174098 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C170048
CL281	Multifunction Acoustic Calibrator	PA160023

- 4. Test procedure : MA101N.
- 5. Results :
- 5.1 Sound Pressure Level
- 5.1.1 Reference Sound Pressure Level

UUT Setting				Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.0	± 0.7

5.1.2 Linearity

	UU	Γ Setting		Applied	d Value	UUT
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

5.2 Time Weighting

5.2.1 Continuous Signal

	UUT	Setting		Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.0	Ref.
	L _{ASP}		S			94.0	± 0.1
	L _{AIP}		Ι			94.1	± 0.1

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所

```
c/o 香港新界屯門與安里一號青山灣機樓四樓
Tel/電話: 2927 2606 Fax/傳真: 2744 8986
```

: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C174098 證書編號

5.2.2 Tone Burst Signal (2 kHz)

	UUT Setting				Applied Value		IEC 60651
Range	Parameter	Frequency	Time	Level	Level Burst		Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	L _{AFP}	А	F	106.0	Continuous	106.0	Ref.
	L _{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

5.3 Frequency Weighting

5.3.1 A-Weighting

		Setting		Applie	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L _{AFP}	А	F	94.00	31.5 Hz	54.7	-39.4 ± 1.5
					63 Hz	67.8	-26.2 ± 1.5
					125 Hz	77.7	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.8	-1.1 (+1.5 ; -3.0)
					12.5 kHz	89.7	-4.3 (+3.0 ; -6.0)

5.3.2 C-Weighting

C worgining	, weighting										
	UUT	Setting		Applie	ed Value	UUT	IEC 60651				
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.				
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)				
50 - 130	L _{CFP}	C	F	94.00	31.5 Hz	91.2	-3.0 ± 1.5				
					63 Hz	93.3	-0.8 ± 1.5				
					125 Hz	93.9	-0.2 ± 1.0				
					250 Hz	94.0	0.0 ± 1.0				
					500 Hz	94.1	0.0 ± 1.0				
		т.	-		1 kHz	94.0	Ref.				
					2 kHz	93.9	-0.2 ± 1.0				
					4 kHz	93.2	-0.8 ± 1.0				
					8 kHz	91.0	-3.0 (+1.5 ; -3.0)				
					12.5 kHz	87.8	-6.2 (+3.0 ; -6.0)				

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

260 年代, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所

輝創上程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate No. : C174098 證書編號

5.4 Time Averaging

	UUT Setting				Applied Value					IEC 60804
Range	Parameter	Frequency	Integrating	Frequency	Burst	Burst	Burst	Equivalent	Reading	Type 1
(dB)		Weighting	Time	(kHz)	Duration	Duty	Level	Level	(dB)	Spec.
					(ms)	Factor	(dB)	(dB)		(dB)
30 - 110	LAcq	А	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						1/10 ²		90	90.1	± 0.5
			60 sec.]		1/10 ³		80	79.9	± 1.0
			5 min.			1/104		70	69.8	± 1.0

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2658547

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value :	94 dB : 31.5 Hz - 125 Hz	: ± 0.35 dB
	250 Hz - 500 Hz	: ± 0.30 dB
	1 kHz	: ± 0.20 dB
	2 kHz - 4 kHz	: ± 0.35 dB
	8 kHz	: ± 0.45 dB
	12.5 kHz	$\pm 0.70 \text{ dB}$
	104 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	114 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	Burst equivalent level	$\pm 0.2 \text{ dB}$ (Ref. 110 dB)
		continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門與安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C173482 證書編號

ITEM TESTED / 送檢項目	(Job No. / 序引編號:IC17-0924)	Date of Receipt / 收件日期: 20 June 2017
Description / 儀器名稱 :	Integrating Sound Level Meter (EQ009)	
Manufacturer / 製造商 :	Brüel & Kjær	
Model No. / 型號 :	2238	
Serial No. / 編號 :	2285722	
Supplied By / 委託者 :	Action-United Environmental Services and	Consulting
	Unit A, 20/F., Gold King Industrial Building	g,
	35-41 Tai Lin Pai Road, Kwai Chung, N.T.	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 28 June 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K 🖉 Lee Engineer

Certified By 核證

Date of Issue 簽發日期

:

29 June 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate No. : C173482 證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to 1. warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C170048
CL281	Multifunction Acoustic Calibrator	PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- Reference Sound Pressure Level 6.1.1

6.1.1.1 Before Self-calibration

	UUT Setting				Value	UUT
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.2

6.1.1.2 After Self-calibration

	UUT Setting			Applied	d Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

	UU	Γ Setting	Applied	d Value	UUT	
Range	Parameter	Frequency Time		Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Tel/電話: 2927 2606 Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Certificate No. : C173482 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT Setting				d Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L _{AFP}	Α	F	94.00	1	94.0	Ref.
	L _{ASP}		S	4		94.0	± 0.1
	L _{AIP}		Ι			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Burst	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	LAFP	А	F	106.0	Continuous	106.0	Ref.
	L _{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

		Setting		Applie	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L _{AFP}	A	F	94.00	31.5 Hz	54.5	-39.4 ± 1.5
					63 Hz	67.8	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.8	-1.1 (+1.5 ; -3.0)
					12.5 kHz	89.7	-4.3 (+3.0 ; -6.0)

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No. : C173482 證書編號

6.3.2 C-Weighting

C-weighting	UUT Setting				ed Value	UUT	IEC 60651
D			T '				
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L _{CFP}	C	F	94.00	31.5 Hz	90.9	-3.0 ± 1.5
					63 Hz	93.1	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	93.9	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.0
					4 kHz	93.1	-0.8 ± 1.0
					8 kHz	90.9	-3.0 (+1.5 ; -3.0)
					12.5 kHz	87.7	-6.2 (+3.0 ; -6.0)

6.4

Time Averaging

	UUT Setting Applied Value				UUT	IEC 60804				
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
30 - 110	L _{Aeq}	A	10 sec.	4	1	$\frac{1/10}{1/10^2}$	110.0	100	99.9 89.7	± 0.5 ± 0.5
			60 sec. 5 min.			$\frac{1/10^3}{1/10^4}$		80 70	79.2 69.2	± 1.0 ± 1.0

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812707

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value :	94 dB : 31.5 Hz - 125 Hz 250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz Burst equivalent level	: ± 0.30 dB : ± 0.20 dB : ± 0.35 dB : ± 0.45 dB : ± 0.70 dB : ± 0.10 dB (Ref. 94 dB) : ± 0.10 dB (Ref. 94 dB) : ± 0.2 dB (Ref. 110 dB
		continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No. : C174094 證書編號

ITEM TESTED / 送檢項目	目 (Job No. / 序引編號:IC17-0924)	Date of Receipt / 收件日期:14 July 2017
Description / 儀器名稱 :	Sound Level Calibrator (EQ085)	
Manufacturer / 製造商 :	Rion	
Model No. / 型號 :	NC-73	
Serial No. / 編號 :	10655561	
Supplied By / 委託者 :	Action-United Environmental Services an	d Consulting
	Unit A, 20/F., Gold King Industrial Build	ing,
	35-41 Tai Lin Pai Road, Kwai Chung, N.T	Г.
TEST CONDITIONS / 測	試條件	

/ 测武保什

Temperature / 溫度 : $(23 \pm 2)^{\circ}C$ Line Voltage / 雷壓 : ----

Relative Humidity / 相對濕度 : $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 22 July 2017 :

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification & user's specified acceptance criteria. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K C Lee Engineer

Certified By 核證

Date of Issue 簽發日期

:

25 July 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laborator

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 枝正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C174094 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.

.

3. Test equipment :

Equipment ID CL130 CL281 TST150A Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C173864 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	93.9	± 0.5	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	User's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.954	1 kHz ± 6 %	± 1

Remarks : - The user's specified acceptance criteria (user's spec.) is a customer pre-defined operating tolerance of the UUT, suitable for one's own intended use.

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部後印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門與安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C174095 證書編號

ITEM TESTED / 送檢項目 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :	(Job No. / 序引編號: IC17-0924) Sound Calibrator Rion NC-74 34657231 Action-United Environmental Services a Unit A, 20/F., Gold King Industrial Build 35-41 Tai Lin Pai Road, Kwai Chung, N	ding,
TEST CONDITIONS / 測記 Temperature / 溫度 : (2: Line Voltage / 電壓 :		Relative Humidity / 相對濕度 : (55 ± 20)%
TEST SPECIFICATIONS	/ 測試規範	

DATE OF TEST / 測試日期 : 22 July 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K C Lee Engineer

Certified By 核證 Date of Issue 簽發日期 :

25 July 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/俳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址:: www.suncreation.com

Certificate No. : C174095 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

ł

Equipment ID CL130 CL281 **TST150A**

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier

Certificate No. C173864 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.1	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

Certificate No. : C173479 證書編號

ITEM TESTED / 送檢項目 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :	(Job No. / 序引編號: IC17-0924) Sound Calibrator (EQ086) Rion NC-74 34657230 Action-United Environmental Services a Unit A, 20/F., Gold King Industrial Bui 35-41 Tai Lin Pai Road, Kwai Chung, N	ding,	≥ 2017
TEST CONDITIONS / 測記 Temperature / 溫度 : (2: Line Voltage / 電壓 :		Relative Humidity / 相對濕度 : (55 ±	20)%
TEST SPECIFICATIONS	/ 測試規範		

DATE OF TEST / 測試日期 : 28 June 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試	:H T Wong Technical Officer			
Certified By 核證	K Lee Engineer	Date of Issue 簽發日期	:	30 June 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate No. : C173479 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Ľ,

Equipment ID CL130 CL281 TST150A

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C163709 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Naminal Valua	(dB)	(dB)	(dB)
Nominal Value 94 dB, 1 kHz	94.1	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.002	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: CLIENT:	MR BEN TAM ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	WORK ORDER:	HK1831632
ADDRESS:	RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T. HONG KONG	SUB-BATCH: LABORATORY: DATE RECEIVED:	0 HONG KONG 25-May-2018 31-May-2018
	N.T., HONG KONG.	DATE OF ISSUE:	31-May-2018

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen and Temperature
Equipment Type:	Dissolved Oxygen Meter
Brand Name:	YSI
Model No.:	550A
Serial No.:	16A104433
Equipment No.:	
Date of Calibration:	30 May, 2018

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu Assistant Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1831632		ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 31-May-2018 ACTION UNITED ENVIRONME	ENT SERVICES AND CONSULTING	
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Dissolved Oxygen Meter YSI 550A 16A104433 30 May, 2018	Date of Next Calibration:	30 August, 2018

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.42	2.51	+0.09
4.93	4.87	-0.06
7.54	7.42	-0.12
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	10.3	+0.3
20.5	21.1	+0.6
39.0	38.5	-0.5
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu Assistant Manager - Inorganic

c —

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: CLIENT:	MR BEN TAM ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	WORK ORDER:	HK1831630
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,	SUB-BATCH:	0
	NO. 35-41 TAI LIN PAI ROAD,	LABORATORY:	HONG KONG
	KWAI CHUNG,	DATE RECEIVED:	25-May-2018
	N.T., HONG KONG.	DATE OF ISSUE:	31-May-2018

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	pH Value and Temperature
Equipment Type:	pH meter
Brand Name:	AZ
Model No.:	8685
Serial No.:	1141943
Equipment No.:	
Date of Calibration:	30 May, 2018

.....

. -

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu Assistant Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1831630		ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 31-May-2018 ACTION UNITED ENVIRONMENT	SERVICES AND CONSULTING	
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	pH meter AZ 8685 1141943 30 May, 2018	Date of Next Calibration:	30 August, 2018
PARAMETERS: pH Value	Method Ref: APHA (21st edition)	, 4500H:B	
•	Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
	4.0	4.2	+0.20
	7.0	6.9	-0.10
	10.0	9.8	-0.20
		Tolerance Limit (pH unit)	±0.20
Temperature		tional Accreditation New Zealand ⁻ h 2008: Working Thermometer Ca	
	Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
	11.0	11.8	+0.8
	21.0	22.2	+1.2
	38.5	37.9	-0.6

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Tolerance Limit (°C)

Ms. Lin Wai Yu Assistant Manager - Inorganic

±2.0

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: CLIENT:	MR BEN TAM ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	WORK ORDER:	HK1831623
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,	SUB-BATCH:	0
	NO. 35-41 TAI LIN PAI ROAD,	LABORATORY:	HONG KONG
	KWAI CHUNG,	DATE RECEIVED:	25-May-2018
	N.T., HONG KONG.	DATE OF ISSUE:	01-Jun-2018

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Turbitidy
Equipment Type:	Turbidimeter
Brand Name:	Hach
Model No.:	2100Q
Serial No.:	12060C18266
Equipment No.:	
Date of Calibration:	30 May, 2018

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu Assistant Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1831623		ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 01-Jun-2018 ACTION UNITED ENVIRONMENT	SERVICES AND CONSULTING	
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Turbidimeter Hach 2100Q 12060C18266 30 May, 2018	Date of Next Calibration:	30 August, 2018
PARAMETERS:			
PARAMETERS: Turbidity	Method Ref: APHA (21st edition),	, 2130B	
	Method Ref: APHA (21st edition), Expected Reading (NTU)	, 2130B Displayed Reading (NTU)	Tolerance (%)
			Tolerance (%)
	Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%) +9.3
	Expected Reading (NTU) 0	Displayed Reading (NTU) 0.14	
	Expected Reading (NTU) 0 4	Displayed Reading (NTU) 0.14 4.37	+9.3

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

863 Tolerance Limit (%)

800

5

Ms. Lin Wai Yu Assistant Manager - Inorganic

+7.9

±10.0

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 –《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date : 5 May 2009 簽發日期:二零零九年五月五日

Registration Number : HCKLAS 066 註冊號碼:

Date of First Registration : 15 September 1995 首次註冊日期:一九九五年九月十五日

∟ 000552

Appendix G

Event and Action Plan

Event and Action Plan for Air Quality

Event	ET	IEC	ER	Action Contractor
Action Level				Contractor
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	1. Identify source;	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Limit Level	occoo additional monitoring.			
 Exceedance for one sample 	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Monitor theimplementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2. Exceedance for two or more consecutive samples		 Check monitoring data submitted by ET; Check Contractor's working method; Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not
	and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	the ER accordingly; 5. Monitor the implementation of remedial measures.	5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Construction Noise

Event Action	1. Notify ER, IEC and Contractor:	1. Review the investigation results	1. Confirm receipt of	Action Contractor 1. Submit noise mitigation proposals to
Level	 Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the ER accordingly; 3. Advise the ER on the effectiveness of the proposed remedial measures.	writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures.	IEC and ER; 2. Implement noise mitigation proposals.
Limit Level	I. Inform IEC, ER, Contractor and EPD; <u>2. Repeat measurements to</u> confirm findings; 3. Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. 	 Confirm receipt of notification of failure in writino; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. 	 Take immediate action to avoid further <u>exceedance</u>: Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Event and Action Plan for Water Quality

EVENT		IEC	ER	
Action level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures.
Action Level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working measures with IEC and Contractor; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 2 working reader mitigation measures.
Limit Level being exceeded by one sampling day	 exceedance. Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by more than one consecutive sampling days	Level. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days.	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the ER, to slow down or to stop all or part of the construction activities.

Appendix H

Impact Monitoring Schedule

Impact Monitoring Schedule for Reporting Period – June 2018

	Date	Dust M	onitoring	Noise Monitoring	Water Quality
	Date	1-hour TSP	24-hour TSP	ivoise iviointoring	water Quality
Fri	1-Jun-18	AM4b, AM5, AM6, AM7b & AM8	AM1b, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Sat	2-Jun-18		AM4b, AM5, AM6, AM7b & AM8		
Sun	3-Jun-18				
Mon	4-Jun-18				All Water Quality Monitorin Locations
Tue	5-Jun-18				
Wed	6-Jun-18	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Thu	7-Jun-18	AM4b, AM5, AM6, AM7b & AM8	AM1b, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	
Fri	8-Jun-18		AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitorin Locations
Sat	9-Jun-18				
Sun	10-Jun-18				
Mon	11-Jun-18				All Water Quality Monitorin Locations
Tue	12-Jun-18	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	
Wed	13-Jun-18	AM4b, AM5, AM6, AM7b & AM8	AM1b, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitorin Locations
Thu	14-Jun-18		AM4b, AM5, AM6, AM7b & AM8		
Fri	15-Jun-18	AM1b, AM2, AM3 & AM9b			All Water Quality Monitorin Locations
Sat	16-Jun-18]		
Sun	17-Jun-18				
Mon	18-Jun-18				
Tue	19-Jun-18	AM4b, AM5, AM6, AM7b & AM8	AM1b, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitorin Locations
Wed	20-Jun-18		AM4b, AM5, AM6, AM7b & AM8		
Thu	21-Jun-18	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitorin Locations
Fri	22-Jun-18				
Sat	23-Jun-18				All Water Quality Monitorin Locations
Sun	24-Jun-18				
Mon	25-Jun-18	AM4b, AM5, AM6, AM7b & AM8	AM1b, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitorin Locations
Tue	26-Jun-18		AM4b, AM5, AM6, AM7b & AM8		
Wed	27-Jun-18	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	
Thu	28-Jun-18				All Water Quality Monitorin Locations
Fri	29-Jun-18				
Sat	30-Jun-18	AM4b, AM5, AM6, AM7b & AM8	AM1b, AM2, AM3 & AM9b		All Water Quality Monitorin Locations

Sunday or Public Holiday

Impact Monitoring Schedule for next Reporting Period – July 2018

	Dete	Dust Mo	nitoring		
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
Sun	1-Jul-18				
Mon	2-Jul-18				
Tue	3-Jul-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Wed	4-Jul-18				
Thu	5-Jul-18		AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
Fri	6-Jul-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	
Sat	7-Jul-18				All Water Quality Monitoring Locations
Sun	8-Jul-18				
Mon	9-Jul-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Tue	10-Jul-18				
Wed	11-Jul-18		AM4b, AM5, AM6, AM7b & AM8		
Thu	12-Jul-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Fri	13-Jul-18				
Sat	14-Jul-18	AM1c, AM2, AM3 & AM9b			All Water Quality Monitoring Locations
Sun	15-Jul-18				
Mon	16-Jul-18				All Water Quality Monitoring Locations
Tue	17-Jul-18		AM4b, AM5, AM6, AM7b & AM8		
Wed	18-Jul-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Thu	19-Jul-18				
Fri	20-Jul-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Sat	21-Jul-18				
Sun	22-Jul-18				
Mon	23-Jul-18		AM4b, AM5, AM6, AM7b & AM8		
Tue	24-Jul-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Wed	25-Jul-18				
Thu	26-Jul-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Fri	27-Jul-18				
Sat	28-Jul-18		AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
Sun	29-Jul-18				
Mon	30-Jul-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Tue	31-Jul-18				

Monitoring Day Sunday or Public Holiday

Appendix I

Database of Monitoring Result

 $Z: Jobs \\ 2013 \\ TCS00694 \\ 600 \\ EM\&A Report \\ Monthly EM\&A Report \\ 2018 \\ 59th (June 2018) \\ R1659v2. docx \\ R1659v2. \\ R1659v2$

24-hour TSP Monitoring Data

DATE	SAMPLE NUMBER		APSED TIN				ADING	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER	g)	DUST WEIGHT COLLECTED	24-HR TSP $(\mu g/m^3)$
		INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	(µg/III)
	en Area, Tsu	0	0			1	1					1		I	
1-Jun-18	22716	14561.37	14585.87	1470.00	35	35	35.0	30.2	1009.9	1.26	1845	2.7217	2.7878	0.0661	36
7-Jun-18	22718	14585.87	14610.28	1464.60	38	38	38.0	27.2	1006.6	1.35	1977	2.7182	2.7533	0.0351	18
13-Jun-18	22746	14610.28	14634.49	1452.60	30	30	30.0	26.6	998.2	1.10	1604	2.6929	2.7542	0.0613	38
19-Jun-18	22753	14634.49	14658.49	1440.00	28	28	28.0	29.6	1003.6	1.04	1501	2.7071	2.7665	0.0594	40
25-Jun-18	22884	14658.49	14682.49	1440.00	46	46	46.0	28.1	1008.9	1.59	2292	2.6672	2.7518	0.0846	37
30-Jun-18	22917	14682.49	14706.54	1443.00	25	25	25.0	30.4	1004.1	0.95	1372	2.6834	2.7478	0.0644	47
AM2 - Villa	age House ne	ar Lin Ma	Hang Road												
1-Jun-18	22701	10163.78	10187.50	1423.20	37	37	37.0	30.2	1009.9	1.17	1672	2.7058	2.8972	0.1914	114
7-Jun-18	22717	10187.50	10211.50	1440.00	34	34	34.0	27.2	1006.6	1.07	1544	2.7182	2.7701	0.0519	34
13-Jun-18	22744	10211.50	10235.08	1414.80	34	34	34.0	26.6	998.2	1.16	1637	2.7037	2.7953	0.0916	56
19-Jun-18	22752	10235.08	10258.78	1422.00	34	34	34.0	29.6	1003.6	1.15	1642	2.6838	2.8126	0.1288	78
25-Jun-18	22883	10258.78	10282.51	1423.80	34	34	34.0	28.1	1008.9	1.16	1651	2.6803	2.7477	0.0674	41
30-Jun-18	22916	10282.51	10306.14	1417.80	36	36	36.0	30.4	1004.1	1.21	1720	2.6733	2.7769	0.1036	60
AM3 - Ta H	Kwu Ling Fir	e Service S	tation of Ta	Kwu Ling	g Villa	ge	-					•			
1-Jun-18	22699	11301.38	11325.28	1434.00	36	36	36.0	30.2	1009.9	1.10	1578	2.7074	2.8069	0.0995	63
7-Jun-18	22720	11325.28	11349.28	1440.00	32	32	32.0	27.2	1006.6	0.96	1378	2.7216	2.7560	0.0344	25
13-Jun-18	22745	11349.28	11373.28	1440.00	33	33	33.0	26.6	998.2	1.04	1504	2.6897	2.7546	0.0649	43
19-Jun-18	22855	11373.28	11397.28	1440.00	34	34	34.0	29.6	1003.6	1.08	1549	2.6855	2.7826	0.0971	63
25-Jun-18	22882	11397.28	11421.29	1440.60	34	34	34.0	28.1	1008.9	1.08	1559	2.6905	2.7391	0.0486	31
30-Jun-18	22915	11421.29	11445.29	1440.00	32	32	32.0	30.4	1004.1	1.01	1449	2.6921	2.7663	0.0742	51
AM4b - Ho	use no. 10B1	Nga Yiu H	a Village												
2-Jun-18	22697	13300.96	13324.97	1440.00	44	44	44.0	29.1	1010.5	1.19	1711	2.6911	2.7553	0.0642	38
8-Jun-18	22721	13324.97	13348.97	1440.00	38	38	38.0	27.8	1001	1.01	1456	2.6945	2.7742	0.0797	55
14-Jun-18	22751	13348.97	13372.97	1440.00	38	38	38.0	26.8	998.3	1.25	1807	2.6928	2.7563	0.0635	35
20-Jun-18	22858	13372.97	13396.97	1440.00	40	40	40.0	30.2	1005.5	1.32	1894	2.6874	2.7975	0.1101	58
26-Jun-18	22911	13396.97	13421.22	1440.00	40	40	40.0	29.2	1010.6	1.32	1902	2.6770	2.7369	0.0599	31
30-Jun-18	22923	13421.22	13445.22	1440.00	40	40	40.0	30.4	1004.1	1.31	1892	2.6820	2.7727	0.0907	48
AM5a - Pin	g Yeung Vill	age House													
2-Jun-18	22696	12132.31	12156.82	1470.60	40	40	40.0	29.1	1010.5	1.48	2175	2.6906	2.8190	0.1284	59
8-Jun-18	22722	12156.82	12181.28	1467.60	36	36	36.0	27.8	1001	1.34	1967	2.6884	2.7249	0.0365	19

DATE	SAMPLE NUMBER		APSED TIM	1E	CHAR		ADING	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER	WEIGHT g)	DUST WEIGHT COLLECTED	24-HR TSP $(\mu g/m^3)$
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	(µg/m)
14-Jun-18	22750	12181.28	12205.68	1464.00	42	42	42.0	26.8	998.3	1.70	2482	2.6958	2.7970	0.1012	41
20-Jun-18	22857	12205.68	12229.98	1458.00	30	30	30.0	30.2	1005.5	1.28	1861	2.6929	2.7737	0.0808	43
26-Jun-18	22888	12229.98	12254.36	1462.80	40	42	41.0	29.2	1010.6	1.66	2434	2.6625	2.7224	0.0599	25
30-Jun-18	22922	12254.36	12278.86	1470.00	40	40	40.0	30.4	1044.1	1.65	2424	2.6803	2.7918	0.1115	46
	Keng Shan V														
2-Jun-18	22695	9733.56	9757.56	1440.00	28	28	28.0	29.1	1010.5	0.99	1422	2.7099	2.7958	0.0859	60
8-Jun-18	22723	9757.56	9781.56	1440.00	26	26	26.0	27.8	1001.0	0.94	1347	2.7089	2.7425	0.0336	25
14-Jun-18	22749	9781.56	9805.56	1440.00	30	30	30.0	26.8	998.3	0.97	1404	2.7050	2.8225	0.1175	84
20-Jun-18	22879	9805.56	9829.57	1440.60	25	25	25.0	30.2	1005.5	0.84	1206	2.6768	2.7555	0.0787	65
26-Jun-18	22912	9829.57	9853.57	1440.00	30	30	30.0	29.2	1010.6	0.98	1406	2.6919	2.7358	0.0439	31
30-Jun-18	22921	9853.57	9877.57	1440.00	32	32	32.0	30.4	1004.1	1.03	1478	2.6732	2.7519	0.0787	53
AM7b - Loi	Tung Villag	ge House													
2-Jun-18	22694	18780.25	18804.26	1440.60	44	44	44.0	29.1	1010.5	1.23	1777	2.7133	2.9670	0.2537	143
8-Jun-18	22724	18804.26	18828.26	1440.00	46	46	46.0	27.8	1001	1.29	1861	2.6884	2.7744	0.0860	46
14-Jun-18	22748	18828.26	18852.27	1440.60	40	40	40.0	26.8	998.3	1.21	1746	2.7037	2.8014	0.0977	56
20-Jun-18	22856	18852.27	18876.27	1440.00	40	40	40.0	30.2	1005.5	1.21	1742	2.7020	2.8337	0.1317	76
26-Jun-18	22887	18876.27	18900.27	1440.00	42	42	42.0	29.2	1010.6	1.27	1825	2.6887	2.7400	0.0513	28
30-Jun-18	22920	18900.27	18924.27	1440.00	40	40	40.0	30.4	1004.1	1.21	1741	2.6930	2.7881	0.0951	55
AM8 - Po K	Kat Tsai Villa	nge No. 4													
2-Jun-18	22693	12677.81	12701.82	1440.60	28	28	28.0	29.1	1010.5	1.03	1489	2.7052	2.7744	0.0692	46
8-Jun-18	22725	12701.82	12725.91	1445.40	20	20	20.0	27.8	1001	0.84	1217	2.7197	2.7917	0.0720	59
14-Jun-18	22747	12725.91	12749.92	1440.60	30	30	30.0	26.8	998.3	1.00	1438	2.6946	2.7681	0.0735	51
20-Jun-18	22859	12749.92	12773.92	1440.00	34	34	34.0	30.2	1005.5	1.09	1572	2.6813	2.7312	0.0499	32
26-Jun-18	22886	12773.92	12797.92	1440.00	34	34	34.0	29.2	1010.6	1.10	1577	2.6907	2.7402	0.0495	31
30-Jun-18	22919	12797.92	12821.92	1440.00	34	34	34.0	30.4	1004.1	1.09	1571	2.6931	2.7543	0.0612	39
AM9b - Nai	m Wa Po Vil	lage House	No. 80				•		÷	•		•	•	-	
1-Jun-18	22698	20056.58	20080.58	1440.00	34	34	34.0	30.2	1009.9	1.09	1564	2.6980	2.8027	0.1047	67
7-Jun-18	22719	20080.58		1440.60	30	32	31.0	27.2	1006.6	0.99	1425	2.7091	2.7455	0.0364	26
13-Jun-18	22743	20104.59	20128.61	1441.20	32	32	32.0	26.6	998.2	1.05	1511	2.6974	2.7251	0.0277	18
19-Jun-18	22754	20128.61	20152.62	1440.60	40	40	40.0	29.6	1003.6	1.26	1822	2.7078	2.7473	0.0395	22
25-Jun-18	22885	20152.62		1440.00	33	34	33.5	28.5	1004.9	1.09	1569	2.6847	2.7332	0.0485	31
30-Jun-18	22918	20176.62	20200.62	1440.00	40	40	40.0	30.4	1004.1	1.26	1819	2.6821	2.7272	0.0451	25

Construction Noise Monitoring Results, dB(A)

Date	Start Time	1 st Leq _{5min}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
NM1 - Tsung			ge Hoi	18e No. (100000			LCq5min			Leq _{5min}			Lcq _{5min}			LCq5min				correction
6-Jun-18	14:40	72.9	69.0	56.4	65.8	67.8	62.5	65.4	68.3	60.5	65.1	68.9	58.5	58.6	61.5	55.3	59.4	61.1	54.7	67	NA
12-Jun-18	10:03	60.3	63.5	54.5	58.5	61.0	54.0	54.8	57.5	50.5	55.6	58.5	51.0	58.0	60.5	54.0	58.4	61.0	53.5	58	NA
21-Jun-18	10:41	61.4	65.5	48.0	58.0	62.0	47.5	58.8	63.0	42.5	64.6	68.0	53.0	65.2	69.0	52.5	63.1	67.0	52.0	63	NA
27-Jun-18	10:34	57.0	61.5	49.5	58.1	60.5	50.5	56.4	60.0	49.0	54.2	62.0	50.5	56.1	60.5	50.0	56.6	61.0	49.5	57	NA
NM2a - Villa	ge Hou	se near	Lin Ma	a Hang I	Road			I	1	1	II		1	<u> </u>		I	<u> </u>		I	1	
6-Jun-18	10:17	72.0	70.1	59.8	62.2	64.3	57.9	64.5	69.3	58.7	68.1	70.9	63.6	69.0	72.1	64.3	72.4	72.9	65.5	69	72
12-Jun-18	10:49	62.9	66.0	55.5	64.7	67.5	56.0	66.6	70.0	54.5	66.2	69.5	58.5	65.4	68.0	59.0	66.2	69.0	59.0	65	68
21-Jun-18	10:08	61.1	64.0	50.0	63.9	68.0	48.5	64.0	68.0	50.0	64.2	67.5	55.5	66.1	68.5	59.5	65.6	67.5	58.5	64	67
27-Jun-18	9:59	65.1	68.5	56.0	64.8	69.5	57.0	66.1	69.5	55.5	63.8	69.5	57.0	66.7	70.5	57.0	64.2	69.0	56.0	65	68
NM3 - Ping Y	Yeung V	/illage H																			
1-Jun-18	10:37	58.1	62.4	50.1	63.0	66.7	51.4	58.5	60.5	52.4	58.3	57.9	52.8	57.5	60.4	52.1	59.7	63.3	51.0	60	NA
7-Jun-18	9:31	65.8	61.0	51.2	61.4	60.4	50.1	63.5	63.7	49.0	65.6	65.5	51.0	65.2	63.2	52.0	62.4	63.3	52.4	64	NA
13-Jun-18	10:20	58.4	62.0	51.5	60.4	62.0	52.5	60.3	63.5	50.5	62.7	64.5	54.5	65.9	68.0	57.0	64.5	67.0	55.0	63	NA
19-Jun-18	10:45	58.6	60.5	54.0	61.5	64.0	53.5	58.2	61.5	50.5	54.3	55.0	50.0	54.8	55.5	49.0	61.0	62.5	49.0	59	NA
	10:51	68.2	66.0	52.0	57.0	59.5	52.0	58.8	61.0	51.5	61.6	65.0	52.5	58.9	58.5	52.0	59.4	61.0	52.0	63	NA
NM4 - Wo K					1			1	r	0	,		1	1		1	1		r	r	
1-Jun-18	9:56	66.0	61.7	53.3	61.3	59.1	52.1	67.5	69.2	52.3	58.3	59.5	51.4	62.4	62.9	51.2	61.8	58.1	51.4	64	NA
7-Jun-18	10:21	66.6	64.9	52.6	64.9	61.8	52.6	63.8	62.8	51.5	65.8	64.7	50.4	63.8	63.3	48.2	64.0	65.2	48.3	65	NA
13-Jun-18	11:07	61.4	65.0	51.5	60.4	63.5	51.5	60.3	63.5	50.5	62.5	65.5	54.5	65.9	68.0	56.1	64.5	68.0	56.0	63	NA
19-Jun-18	10:58	62.3	63.5	55.0	61.6	64.5	54.5	60.9	63.0	54.5	59.6	64.0	54.0	62.1	64.5	53.5	61.9	63.0	54.0	61	NA
	11:33	58.0	58.0	49.0	52.5	55.0	47.0	51.8	54.5	47.5	65.2	65.5	49.5	58.9	62.5	52.0	55.1	58.5	49.0	60	NA
NM5– Ping Y				1	1			1	1	1	<u>г</u>		1	1		1			1	1	
7-Jun-18	11:01	54.6	55.2	50.4	52.9	55.7	49.4	53.5	56.6	50.4	54.2	55.0	49.8	51.3	55.3	48.9	51.2	54.3	48.9	53	NA
12-Jun-18	9:28	51.6	55.3	48.9	52.4	55.7	49.6	51.8	54.6	48.3	54.6	56.2	45.9	52.8	54.1	45.3	51.9	54.6	44.1	53	NA
19-Jun-18	9:17	58.0	61.0	53.0	57.7	60.5	53.0	59.0	61.5	53.0	58.5	61.5	54.0	58.9	62.0	53.0	59.9	63.0	53.5	59	NA
25-Jun-18	9:38	64.0	71.5	55.5	55.4	58.5	52.5	55.3	56.4	52.0	56.4	59.0	52.0	56.1	59.0	51.5	57.1	59.0	52.0	59	NA
NM6 – Tai To	0	U	1					1			Г Г		1								
1-Jun-18	14:04	63.9	66.3	60.7	63.2	65.9	60.1	62.7	65.4	59.9	63.5	66.8	60.3	63.5	67.1	60.9	63.2	67.0	59.9	63	NA
7-Jun-18	11:34	58.6	61.2	52.4	58.9	61.7	52.4	57.5	59.6	50.4	58.2	61.0	51.8	60.3	62.3	50.9	58.2	61.3	50.9	59	NA
12-Jun-18	10:31	55.7	61.4	52.8	56.9	60.7	53.4	55.8	60.9	52.6	56.4	62.8	51.9	57.8	62.6	51.9	58.4	61.3	50.6	57	NA
19-Jun-18	10:08	58.7	61.5	52.5	57.9	60.5	52.0	60.6	65.5	53.5	60.1	55.0	53.0	53.2	55.5	52.5	59.2	64.0	53.0	59	NA
NM7 – Po Ka	at Tsai	Village																			

 $\label{eq:loss2013} CS00694 \\ 600 \\ EM\&A Report \\ Monthly EM\&A Report \\ 2018 \\ 59th (June 2018) \\ R1659v2. \\ docx \\ R1659v2. \\ R1659v2. \\ docx \\ R1659v2. \\ docx \\ R1659v2. \\ R1659$

Date	Start Time	1 st Leq _{5min}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
1-Jun-18	13:18	61.3	62.3	57.4	61.5	64.6	57.9	62.1	65.4	58.9	63.6	66.1	59.7	62.4	64.3	58.0	62.6	64.9	58.9	62	NA
7-Jun-18	13:18	65.6	62.1	53.2	60.9	61.6	54.4	56.6	58.8	54.4	61.8	61.2	52.8	61.2	61.5	51.0	60.3	60.1	51.1	62	NA
12-Jun-18	13:31	58.7	61.9	52.4	57.6	60.2	53.3	57.9	60.4	53.2	57.6	59.4	52.6	58.7	60.3	52.5	60.7	62.3	53.6	59	NA
19-Jun-18	13:05	63.0	65.5	57.0	62.4	65.5	56.5	64.9	68.0	58.5	64.0	67.0	57.0	65.7	68.5	58.0	65.8	68.5	58.0	64	NA
25-Jun-18	13:13	62.6	65.5	55.5	64.3	67.0	57.0	64.9	67.5	59.0	63.6	66.5	55.5	64.9	67.5	58.0	64.1	67.0	56.0	64	NA
NM8 - Villag	ge Hous	e, Tong	Hang																		
6-Jun-18	9:26	58.6	63.4	54.1	59.7	63.8	55.6	60.1	64.6	54.2	59.9	62.2	55.6	58.6	62.4	54.3	59.6	61.7	55.3	59	NA
12-Jun-18	10:50	61.3	66	51.9	58.4	65.7	50.6	61.3	67.3	51	63.3	69	52	61.8	64.2	49.4	62	66.2	50.4	62	NA
21-Jun-18	11:11	56.6	59	54	55.3	56.5	53.5	55.9	58.5	53	61.4	64.5	53.5	57.7	60	54	57.6	59	55	58	NA
27-Jun-18	11:26	58.6	60.5	55	58.5	60.5	56	60.4	63.5	56	58.9	60.5	56	59.4	61	56.5	60.8	63	56.5	60	NA
NM9 - Villag	ge Hous	e, Kiu T	au Vill	age																	
6-Jun-18	10:29	57.4	62.6	54.6	60.9	62.9	54.8	60.2	63.4	54.9	56.2	59.4	53.2	57.8	60.7	53.1	57.4	59.6	53.8	59	NA
12-Jun-18	10:09	61.6	63.5	58.3	63.2	65.6	58.0	61.1	63.0	58.0	61.1	62.7	57.8	62.5	64.4	57.1	60.7	62.1	57.1	62	NA
21-Jun-18	10:17	60.5	63.0	55.5	64.7	68.0	57.5	57.9	59.0	56.0	57.9	59.0	56.0	58.1	59.5	56.0	58.6	60.0	56.5	60	NA
27-Jun-18	10:37	59.2	61.5	54.5	59.3	62.0	55.0	60.2	62.5	56.0	59.5	61.5	56.0	59.2	61.0	56.5	59.0	61.0	56.0	59	NA
NM10 - Nam	n Wa Po	o Village	House	No. 80	1																
6-Jun-18	13:29		60.7	54.6	57.3	59.2	53.1	58.6	59.6	53.4	58.9	60.2	54.1	57.7	61.7	55.8	57.4	61.9	54.9	58	61
12-Jun-18	9:21	61.8	62.8	58.2	60.5	62.4	58.8	60.7	62.4	58.9	61.2	63.8	59.8	61.3	63.0	60.9	62.2	64.0	60.8	61	64
21-Jun-18	9:28	65.8	67.5	60.5	62.5	63.5	60.0	61.1	61.5	59.5	61.6	63.5	59.5	63.1	62.5	59.0	59.3	61.0	57.5	63	66
27-Jun-18	9:40	56.9	58.0	51.5	57.8	60.5	49.5	59.9	62.5	53.0	60.4	61.5	54.5	59.3	61.0	55.0	58.0	60.5	50.0	59	62

Water Quality Monitoring Data for Contract 6 and SS C505

Date	2-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS	(mg/L)
WM1-C	9:30	0.30	28.6 28.6	28.6	4.44 4.26	4.4	57.2 54.7	56.0	11.6 11.9	11.8	8.34 8.34	8.3	11 10	10.5
WM1	9:38	0.20	27.6 27.6	27.6	4.45	4.3	56.5 52.6	54.6	7.2	7.0	7.77	7.8	4	4.0
Date	4-Jun-18		m			(T)	D 0	(0/)					a di	
Location	Time	Depth (m)	Temp	(oC)		mg/L)		(%)		ity (NTU)		Н		(mg/L)
WM1-C	9:49	0.20	29.6 29.6	29.6	6.15 6.21	6.2	79.5 81.7	80.6	17.9 18.5	18.2	7.9 7.9	7.9	18 17	17.5
WM1	9:37	0.14	28.9 28.9	28.9	4.53 4.6	4.6	59.1 60.7	59.9	8.9 8.6	8.7	8.2 8.2	8.2	9 8	8.5
	(I 10				•	•			•	1		•	L	
Date Location	6-Jun-18 Time	Donth (m)	Temp	(\mathbf{aC})		mg/L)	DO	(%)	Turbid	ity (NTU)		Н	SS	mg/L)
Location	Time	Depth (m)	26.6	(0C)	5.5	ing/L)	68.3				<u>р</u> 8.9		1230	(IIIg/L)
WM1-C	10:00	0.35	26.6	26.6	5.44	5.5	67.7	68.0	over range	over range	8.9	8.9	1320	1275.
WM1	10:10	0.30	26.5 26.5	26.5	5.44 5.28	5.4	67.7 65.6	66.7	over range	over range	8.22 8.22	8.2	1160 1180	1170.
Date	8-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbid	ity (NTU)	D	Н	SS	(mg/L)
WM1-C	10:00	0.50	25.8 25.8	25.8	6.75 6.74	6.7	82.9 82.8	82.9	256.0 254.0	255.0	7.48 7.48	7.5	167 167	167.0
WM1	10:10	1.50	25.7 25.7	25.7	5.32 5.33	5.3	65.1 65.4	65.3	251.0 244.0	247.5	7.11 7.11	7.1	178 172	175.0
I										11				
Date	11-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1-C	10:40	0.35	26.3 26.3	26.3	6.38 6.53	6.5	79.0 81.0	80.0	4.7 6.0	5.3	7.4 7.4	7.4	<u>9</u> 8	8.5
WM1	10:30	0.22	26.2 26.2	26.2	5.97 6.14	6.1	74.0	75.1	11.1 11.1	11.1	7.71	7.7	15 14	14.5
I		1	_5.2		0.11	1	, , , , , ,	1			,.,.	1		
Date	13-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS	(mg/L)
WM1-C	10:10	0.60	26.2 26.2	26.2	4.08	4.2	50.5 53.8	52.2	38.6 38.5	38.6	7.35 7.35	7.4	28 26	27.0
		1	25.8		7.03	<u> </u>	56.3		13.6		8.15		16	

14.5

81.2

8.15

16

6.61

25.8

Date	15-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ity (NTU)	р	H	SS	(mg/L)
WM1-C	9:35	0.30	25.7 25.7	25.7	6.8 6.86	6.8	83.4 84.2	83.8	9.1 8.7	8.9	7.23	7.2	6 5	5.5
WM1	9:45	0.30	25.5 25.5	25.5	6.24 6.29	6.3	76.3 76.9	76.6	16.6 15.7	16.2	7 7	7.0	13 14	13.5
Date	19-Jun-18		1		T				1		I		T	
Location	Time	Depth (m)	Temp	(oC)		mg/L)		(%)		ity (NTU)	1	H		(mg/L)
WM1-C	10:25	0.30	27.8 27.8	27.8	7.5 7.56	7.5	95.9 96.4	96.2	11.4 11.9	11.7	7.37	7.4	5 5	5.0
WM1	10:20	0.20	27.5 27.5	27.5	5.81 5.85	5.8	73.6 74.1	73.9	17.9 19.6	18.8	7.51 7.51	7.5	9 10	9.5
Date	21-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1-C	11:00	0.30	28.8 28.8	28.8	5.3 5.17	5.2	68.7 66.7	67.7	15.0 13.6	14.3	7.53 7.53	7.5	32	2.5
WM1	10:50	0.20	28.5 28.5	28.5	6.02 6.09	6.1	77.6 78.2	77.9	49.6 47.4	48.5	7.44 7.44	7.4	27 27	27.0
Date	23-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbid	ity (NTU)	u	H	SS	(mg/L)
WM1-C	10:45	0.35	26.9 26.9	26.9	6.74 6.77	6.8	84.4 84.6	84.5	307.0 301.0	304.0	6.4 6.4	6.4	127 117	122.0
WM1	10:35	0.25	26.8 26.8	26.8	5.5 5.51	5.5	68.8 68.9	68.9	167.0 174.0	170.5	6.7 6.7	6.7	97 90	93.5
Dete	25 Lass 19				•	•								
Date Location	25-Jun-18 Time	Depth (m)	Тетр	(\mathbf{aC})	DO (mg/L)	DO	(%)	Turkid	ity (NTU)		H	60	(mg/L)
Location	Time	Deptii (iii)	÷			ilig/L)	74.8	(70)						(mg/L)
WM1-C	10:30	0.35	27.1 27.1	27.1	5.96 6.02	6.0	75.6	75.2	29.6 30.3	30.0	6.8 6.8	6.8	15 15	15.0
WM1	10:20	0.25	26.8 26.8	26.8	4.9 4.93	4.9	61.2 61.5	61.4	33.1 32.4	32.8	6.8 6.8	6.8	20 19	19.5

Date	28-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidi	ity (NTU)	р	H	SS	(mg/L)
WM1 C	11.05	0.25	28.2	28.2	7.18	7.2	92.3	02.2	17.5	17.0	7.1	7.1	9	0.0
WM1-C	11:05	0.35	28.2	28.2	7.2	1.2	92.2	92.3	16.5	17.0	7.1	/.1	9	9.0
W7M1	11.00	0.25	27.4	27.4	6.4	6.4	80.6	80.5	26.8	26.4	7.5	7.5	23	22.5
VV IVI I	WM1 11:00	0.25	27.4	27.4	6.38	6.4	80.3	80.5	25.9	26.4	7.5	7.5	24	23.5

Date	30-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WALL C	11.27	0.27	28.6	28.6	7.6	7.6	97.9	08.0	14.9	14.9	7.1	7.1	7	75
WM1-C	11:37	0.27	28.6	28.0	7.65	/.6	98.1	98.0	14.9	14.9	7.1	/.1	8	1.5
W/M1	11:20	0.19	27.4	27.4	6.7	67	85.4	85.8	43.9	44.2	6.9	6.0	29	20.0
WM1	11:20	0.19	27.4	27.4	6.75	6./	86.1	03.0	44.5	44.2	6.9	6.9	29	29.0

Water Quality Monitoring Data for Contract 2 and 3

Date	2-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbid	lity (NTU)	p	H	SS	(mg/L)
WM4-CA	11:05	0.12	30	30.0	5.32	5.2	70.4	67.6	4.8	4.9	7.01	7.0	11	10.5
WWH-CA	11.05	0.12	30	50.0	4.99	5.2	64.8	07.0	5.1	4.9	7.01	7.0	10	10.5
WM4-CB	11:15	0.28	30.5	30.5	4.05	4.0	54.0	52.8	11.2	11.7	6.97	7.0	18	19.0
WWH-CD	11.15	0.28	30.5	50.5	3.86	4.0	51.6	52.0	12.1	11./	6.97	7.0	20	19.0
WM4	10:55	0.15	28.8	28.8	4.32	12	56.0	54.8	14.9	14.2	6.73	67	11	11.5
vv 1v14	10:55	0.15	28.8	28.8	4.18	4.3	53.6	34.8	13.4	14.2	6.73	6.7	12	11.5

Date	4-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:41	0.18	29.2	29.2	4.01	4.1	52.1	52.9	6.1	6.1	7.8	7.8	6	6.5
WWW4-CA	11.41	0.18	29.2	29.2	4.09	4.1	53.7	52.9	6.1	6.1	7.8	/.0	7	0.3
WM4-CB	12:17	0.30	29.7	29.7	5.1	5 1	65.8	66.3	10.6	10.8	7.5	75	8	05
WWI4-CD	12:17	0.50	29.7	29.7	5.12	5.1	66.7	00.5	10.9	10.8	7.5	7.5	9	8.5
WM4	11:27	0.27	28.9	28.9	5.32	5 /	71.1	71.8	11.8	12.0	7.7	77	8	9.0
W 1V14	11:27	0.27	28.9	28.9	5.41	5.4	72.4	/1.8	12.1	12.0	7.7	1.1	10	9.0

Date	6-Jun-18													
Location	Time	Depth (m)	Temp) (oC)	DO (1	ng/L)	DO	(%)	Turbid	lity (NTU)	p	H	SS	(mg/L)
WM4-CA	12:20	0.20	26.2	26.2	4.59	15	56.9	55.8	41.3	40.5	7.52	75	22	23.0
WM4-CA	12:20	0.20	26.2	20.2	4.42	4.5	54.7	55.8	39.7	40.5	7.52	7.5	24	25.0
WAA CD	12.20	0.25	26.7	267	3.6	2.0	44.9	447	64.7	(12	7.32	7.2	36	25.0
WM4-CB	12:30	0.35	26.7	26.7	3.56	3.6	44.4	44.7	63.9	64.3	7.32	1.3	34	35.0
WM4	12:10	0.25	26.7	26.7	5.45	5 2	67.9	66.5	70.3	69.3	7.86	7.9	40	41.0
vv 1V14	12:10	0.25	26.7	20.7	5.22	5.5	65.1	00.5	68.2	09.5	7.86	7.9	42	41.0

Date	8-Jun-18													
Location	Time	Depth (m)	Temp) (oC)	DO (I	ng/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:30	0.40	24.7	24.7	7.21	7.2	86.7	86.5	36.5	36.4	7.39	7.4	17	165
WM4-CA	11:50	0.40	24.7	24.7	7.17	1.2	86.3	80.5	36.3	50.4	7.39	7.4	16	16.5
WM4-CB	11.45	0.46	25.5	25.5	5.88	5.8	71.2	70.8	56.9	567	7.36	7.4	33	24.5
WM4-CD	11:45	0.40	25.5	25.5	5.76	5.8	70.3	/0.8	56.5	56.7	7.36	7.4	36	34.5
WM4	11:20	1.20	25.4	25.4	8.5	0.1	103.6	102.1	67.3	67.4	7.47	7.5	40	38.5
VV 1V14	11:20	1.20	25.4	23.4	8.25	8.4	100.6	102.1	67.5	07.4	7.47	7.5	37	58.5

Date	11-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	ng/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	13:40	0.15	29.1	29.1	6.57	6.6	85.8	86.5	2.9	3.0	7.67	77	3	35
WM4-CA	15:40	0.15	29.1	29.1	6.67	6.6	87.1	80.5	3.1	5.0	7.67	1.1	4	5.5
WM4-CB	12.50	0.31	30.9	30.9	6.94	7.0	93.6	04.2	142.0	144.5	7.55	76	100	97.0
WM4-CD	13:50	0.51	30.9	50.9	7.04	7.0	94.9	94.3	147.0	144.5	7.55	7.6	94	97.0
3373.4.4	12.20	0.17	29.1	20.1	6.55		85.6	95 (102.0	102.5	7.96	8.0	60	(2.0
WM4	13:30	0.17	29.1	29.1	6.56	6.6	85.6	85.6	103.0	102.5	7.96	8.0	64	62.0

Date	13-Jun-18													
Location	Time	Depth (m)	Temp) (oC)	DO (I	ng/L)	DO	(%)	Turbid	lity (NTU)	р	Н	SS	(mg/L)
WM4-CA	14:08	0.27	25.7	25.7	5.72	5.8	69.3	70.2	15.0	15.2	7.4	7.4	6	7.0
WM4-CA	14:08	0.27	25.7	25.7	5.86	5.8	71.1	70.2	15.3	13.2	7.4	7.4	8	7.0
WM4-CB	14:39	0.39	26.7	26.7	4.22	12	52.6	53.7	19.1	19.5	7.1	7.1	17	16.5
WINI4-CD	14:59	0.39	26.7	20.7	4.3	4.3	54.7	35.7	19.9	19.5	7.1	/.1	16	10.3
WM4	12.20	0.19	26.8	26.8	5.93	5.0	74.1	73.2	22.8	22.1	7.6	7.6	17	17.0
W 1V14	13:30	0.18	26.8	20.8	5.81	5.9	72.2	13.2	21.4	22.1	7.6	/.0	17	17.0

Date	15-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:45	0.15	26.8	26.8	10.12	9.9	125.7	122.7	13.3	13.1	8.13	0 1	<2	~
WM4-CA	11:45	0.15	26.8	20.8	9.63	9.9	119.6	122.7	12.9	15.1	8.13	8.1	<2	<2
WM4-CB	11:55	0.25	27.8	27.8	5.17	5 1	65.1	63.4	10.0	10.4	7.48	75	6	7.0
WINI4-CD	11:55	0.25	27.8	27.8	4.94	5.1	61.7	05.4	10.9	10.4	7.48	7.5	8	7.0
W/N/A	11.25	0.20	27.3	27.3	6.85	()	86.4	07.1	26.7	27.7	8.71	07	13	12.0
WM4	11:35	0.20	27.3	21.3	6.95	6.9	87.7	87.1	28.6	27.7	8.71	8.7	11	12.0

Date	19-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	ng/L)	DO	(%)	Turbid	lity (NTU)	p	H	SS	(mg/L)
WM4-CA	12:25	0.14	29.8	29.8	8.14	8.2	107.2	107.6	6.9	6.1	7.34	7.2	3	3.0
WM4-CA	12:23	0.14	29.8	29.8	8.17	0.2	107.9	107.0	6.0	6.4	7.34	7.3	3	5.0
WM4-CB	12:35	0.20	30.5	30.5	5.45	5.4	72.9	72.9	8.1	8.0	6.7	67	<2	~?
WM4-CD	12:55	0.20	30.5	50.5	5.44	5.4	72.8	12.9	7.9	8.0	6.7	6.7	<2	<2
WM4	12:15	0.15	29.9	29.9	6.83	6.9	90.6	90.9	14.2	13.8	6.64	6.6	4	4.0
W 1V14	12:15	0.15	29.9	29.9	6.88	0.9	91.1	90.9	13.4	15.8	6.64	6.6	4	4.0

Date	21-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	ng/L)	DO	(%)	Turbid	lity (NTU)	p	H	SS	(mg/L)
WM4-CA	12:35	0.13	30.3	30.3	8.02	76	106.4	101.2	6.7	6.6	8	8.0	<2	2.0
WWH-CA	12.55	0.15	30.3	30.5	7.23	/.6	95.9	101.2	6.6	6.6	8	0.0	2	2.0
WM4-CB	12:45	0.25	30.6	30.6	4.08	4.0	54.6	53.9	9.6	9.9	7.22	7.2	8	75
WM4-CD	12:45	0.25	30.6	50.0	3.96	4.0	53.1	55.9	10.2	9.9	7.22	1.2	7	7.5
WM4	12.25	0.15	30.8	20.9	5.5	<i></i>	73.7	72.2	46.1	49.2	7.87	7.0	27	27.5
W 1V14	12:25	0.15	30.8	30.8	5.44	5.5	72.8	73.3	50.3	48.2	7.87	7.9	28	27.5

Date	22-Jun-18 #									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbic	lity (NTU)	рН	SS	S(mg/L)
WM4-CA	11:20	0.13				3.4	3.8		5	5.0
WWH-CA	11.20	0.15				4.2	5.8		5	5.0
WM4-CB	11:30	0.20				5.3	6.1		10	10.0
WM4-CD	11:50	0.20				6.8	6.1		10	10.0
WM4	11.15	0.15				57.9	5 9.0		23	22.0
w 14	11:15	0.15				58.1	58.0		23	23.0

Date	23-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	ng/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	12:40	0.50	25.1	25.1	8.15	8.2	98.7	98.8	169.0	166.5	7.7	77	113	111.0
WW4-CA	12.40	0.50	25.1	23.1	8.16	0.2	98.8	90.0	164.0	100.5	7.7	/./	109	111.0
WM4-CB	13:00	0.40	26.1	26.1	7.46	75	92.1	92.2	191.0	194.0	7.3	7.2	183	181.5
WM4-CD	15:00	0.40	26.1	20.1	7.47	1.5	92.3	92.2	197.0	194.0	7.3	1.5	180	181.5
3373.4.4	12.20	0.70	26.2	26.2	7.64		94.4	04.5	224.0	225.5	7.6	7.6	193	102.5
WM4	12:30	0.70	26.2	26.2	7.66	1.1	94.5	94.5	227.0	225.5	7.6	/.6	194	193.5

Date	25-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	12:30	0.20	25.6	25.6	8.23	8.2	100.6	100.7	8.7	87	7.4	7.4	<2	~
WM4-CA	12:50	0.20	25.6	23.0	8.25	0.2	100.7	100.7	8.6	0.7	7.4	/.4	<2	<2
WM4-CB	12:40	0.30	27.3	27.3	4.92	4.9	61.9	62.0	19.6	10.6	6.7	6.7	9	8.0
WM4-CD	12:40	0.50	27.3	27.5	4.94	4.9	62.1	02.0	19.5	19.6	6.7	0.7	7	8.0
WM4	12:20	0.20	26.7	26.7	7.6	76	94.9	95.0	34.8	34.7	7.3	7.2	16	17.0
W 1V14	12:20	0.20	26.7	20.7	7.61	7.0	95.0	95.0	34.5	54.7	7.3	7.3	18	17.0

Date	28-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	13:10	0.15	28.3	28.3	7.89	7.9	101.2	101.3	5.0	4.0	8.1	8.1	2	2.5
WWW4-CA	15:10	0.15	28.3	28.5	7.9	7.9	101.3	101.5	4.9	4.9	8.1	0.1	3	2.3
WM4-CB	13:20	0.31	30.2	30.2	6.4	6.4	85.5	85.6	16.0	15.6	7.7	77	11	10.0
WIVI4-CD	15:20	0.51	30.2	50.2	6.42	6.4	85.7	83.0	15.2	13.0	7.7	1.1	9	10.0
WM4	13:00	0.20	29.3	29.3	7.77	7.8	100.5	100.9	20.3	19.9	7.9	7.9	11	10.5
W 1V14	15:00	0.20	29.3	29.5	7.73	7.0	101.2	100.9	19.5	19.9	7.9	7.9	10	10.5

Date	30-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	0.26	0.12	27.3	27.3	8.33	8.3	104.8	105.0	11.5	11.0	7.4	74	3	2.0
WM4-CA	9:36	0.13	27.3	21.5	8.36	0.5	105.1	105.0	12.0	11.8	7.4	7.4	3	3.0
WM4-CB	8:57	0.37	28.5	28.5	5.62	57	71.0	71.6	9.9	10.0	6.7	(7	6	6.0
WIVI4-CD	8.57	0.57	28.5	28.3	5.7	5.7	72.1	/1.0	10.1	10.0	6.7	6.7	6	0.0
WM4	9:11	0.33	27.3	27.3	7.43	75	93.2	94.0	32.2	32.8	7.1	7.1	36	265
vv 1V14	9.11	0.33	27.3	21.5	7.49	7.5	94.7	94.0	33.4	52.8	7.1	/.1	37	36.5

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.59) – June 2018

Date

2-Jun-18

Water Quality Monitoring Data for Contract 6

Date	2-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS	(mg/L)
WM2A-C	10:05	0.22	26.7 26.7	26.7	4.43 4.3	4.4	55.4 53.5	54.5	14.4 13.6	14.0	7.52 7.52	7.5	4 6	5.0
WM2A	9:50	0.15	26.9 26.9	26.9	5.38 5.26	5.3	67.3 65.6	66.5	24.0 24.2	24.1	7.71 7.71	7.7	14 12	- 13.0
Data	4 1 10													
Date Location	4-Jun-18 Time	Depth (m)	Temr	o (oC)	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	n	Н	SS	(mg/L)
			27.2		5.71		71.7		13.0	-	7.60		2	
WM2A-C	10:17	0.27	27.2	27.2	5.8	5.8	73.0	72.4	13.5	13.3	7.60	7.6	2	2.0
WM2A	10:01	0.17	27.7	27.7	5.84	5.9	71.1	72.1	20.2	20.5	7.80	7.8	10	10.0
	10101	0117	27.7		5.89	0.0	73.0	, 211	20.7	2010	7.80	7.0	10	1010
Date	6-Jun-18 #													
Location	Time	Depth (m)		o (oC)	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)		Н	SS	(mg/L)
WM2A-C	11:15	0.30	25.8	25.8	6.42	6.3	78.9	77.6	240.0	243.0	8.06	8.1	123	126.5
	11110	0.00	25.8	2010	6.23	0.0	76.2		246.0	2.0.0	8.06	011	130	12010
			26.2	26.2	5.71	5.6	70.7	69.1	944.0 991.0	967.5	7.90 7.90	7.9	428 461	444.5
WM2A	11:00	0.25	26.2	26.2	5 / 8	5.0	677							
WM2A	11:00	0.25	26.2	26.2	5.48	5.0	67.4		991.0		7.90		401	_
WM2A Date	11:00 7-Jun-18 #	0.25	26.2	26.2	5.48	5.0	67.4		991.0		7.90			
Date		0.25 Depth (m)	26.2 Temp		5.48		-	(%)	Turbidi	ty (NTU)		H	SS	(mg/L)
Date Location	7-Jun-18 #						-		Turbidi 28.3				SS 27	
Date Location	7-Jun-18 # Time	Depth (m)					-		Turbidi 28.3 27.3	ty (NTU) 27.8			SS 27 27	27.0
Date Location	7-Jun-18 # Time	Depth (m)					-		Turbidi 28.3 27.3 354.0	ty (NTU)			SS 27 27 266	27.0
Date Location WM2A-C	7-Jun-18 # Time 10:25	Depth (m) 0.38					-		Turbidi 28.3 27.3	ty (NTU) 27.8			SS 27 27	- 27.0
Date Location WM2A-C WM2A Date	7-Jun-18 # Time 10:25	Depth (m) 0.38 0.30	Тетр	o (oC)	DO (mg/L)	DO	(%)	Turbidi 28.3 27.3 354.0 337.0	ty (NTU) 27.8 345.5	p	H	SS 27 27 266 266 266	- 27.0 - 266. 0
Date Location WM2A-C WM2A Date	7-Jun-18 # Time 10:25 10:40	Depth (m) 0.38	Temp		DO (DO		Turbidi 28.3 27.3 354.0 337.0 Turbidi	ty (NTU) 27.8	p		SS 27 27 266 266 266 SS	27.0
Date Location WM2A-C WM2A Date Location	7-Jun-18 # Time 10:25 10:40 8-Jun-18	Depth (m) 0.38 0.30	Тетр Тетр 25.1	o (oC)	DO (mg/L)	DO 	(%)	Turbidi 28.3 27.3 354.0 337.0 Turbidi 259.0	ty (NTU) 27.8 345.5	p p 7.40	H	SS 27 27 266 266 266 SS 67	- 27.0 266.0
Date Location WM2A-C WM2A Date Location WM2A-C	7-Jun-18 # Time 10:25 10:40 8-Jun-18 Time 10:30	Depth (m) 0.38 0.30 Depth (m) 0.38	Temp 25.1 25.1	o (oC) o (oC) 25.1	DO (DO (8.64 8.49	mg/L) 	DO DO 104.8 103.0	(%) (%) 103.9	Turbidi 28.3 27.3 354.0 337.0 Turbidi 259.0 268.0	ty (NTU) 27.8 345.5 ty (NTU)	p 7.40 7.40	H H T.4	SS 27 27 266 266 266 5S 67 73	27.0 266.0 (mg/L) 70.0
Date Location WM2A-C WM2A Date Location	7-Jun-18 # Time 10:25 10:40 8-Jun-18 Time	Depth (m) 0.38 0.30 Depth (m)	Тетр Тетр 25.1	o (oC)	DO (mg/L)	DO 	(%)	Turbidi 28.3 27.3 354.0 337.0 Turbidi 259.0	ty (NTU) 27.8 345.5 ty (NTU)	p p 7.40	H	SS 27 27 266 266 266 SS 67	27.0 266.0 (mg/L) 70.0
Date Location WM2A-C WM2A Date Location WM2A-C WM2A	7-Jun-18 # Time 10:25 10:40 8-Jun-18 Time 10:30 10:20	Depth (m) 0.38 0.30 Depth (m) 0.38	Temp 25.1 25.1 25.6	o (oC) o (oC) 25.1	DO (mg/L) 	DO DO 104.8 103.0 78.9	(%) (%) 103.9	Turbidi 28.3 27.3 354.0 337.0 Turbidi 259.0 268.0 over	ty (NTU) 27.8 345.5 ty (NTU) 263.5	p 7.40 7.40 7.60	H H T.4	SS 27 27 266 266 266 5S 67 73 800	27.0 266.0 (mg/L) 70.0
Date Location WM2A-C WM2A Date Location WM2A-C WM2A WM2A	7-Jun-18 # Time 10:25 10:40 8-Jun-18 Time 10:30 10:20 9-Jun-18 #	Depth (m) 0.38 0.30 Depth (m) 0.38 0.40	Temp 25.1 25.1 25.6 25.6	p (oC) p (oC) 25.1 25.6	DO (B.64 8.49 6.45 6.33	mg/L) mg/L) 8.6 6.4	DO DO 104.8 103.0 78.9 77.0	(%) (%) 103.9 - 78.0	Turbidi 28.3 27.3 354.0 337.0 Turbidi 259.0 268.0 over range	ty (NTU) 27.8 345.5 ty (NTU) 263.5 over range	p 7.40 7.60 7.60	H H 7.4 7.6	SS 27 27 266 266 266 5S 67 73 800 770	27.0 266.0 (mg/L) 70.0 785.0
Date Location WM2A-C WM2A Date Location WM2A-C WM2A Date Location	7-Jun-18 # Time 10:25 10:40 8-Jun-18 Time 10:30 10:20 9-Jun-18 # Time	Depth (m) 0.38 0.30 Depth (m) 0.38 0.40 Depth (m)	Temp 25.1 25.1 25.6 25.6	o (oC) o (oC) 25.1	DO (B.64 8.49 6.45 6.33	mg/L) 	DO DO 104.8 103.0 78.9 77.0	(%) (%) 103.9	Turbidi 28.3 27.3 354.0 337.0 Turbidi 259.0 268.0 over range	ty (NTU) 27.8 345.5 ty (NTU) 263.5 over range	p 7.40 7.60 7.60	H H T.4	SS 27 27 266 266 266 5S 67 73 800 770	(mg/L) (mg/L) (mg/L)
Date Location WM2A-C WM2A Date Location WM2A-C WM2A	7-Jun-18 # Time 10:25 10:40 8-Jun-18 Time 10:30 10:20 9-Jun-18 #	Depth (m) 0.38 0.30 Depth (m) 0.38 0.40	Temp 25.1 25.1 25.6 25.6	p (oC) p (oC) 25.1 25.6	DO (B.64 8.49 6.45 6.33	mg/L) mg/L) 8.6 6.4	DO DO 104.8 103.0 78.9 77.0	(%) (%) 103.9 - 78.0	Turbidi 28.3 27.3 354.0 337.0 Turbidi 259.0 268.0 over range Turbidi 5.1 5.2	ty (NTU) 27.8 345.5 ty (NTU) 263.5 over range	p 7.40 7.60 7.60	H H 7.4 7.6	SS 27 27 266 266 266 266 355 67 73 800 770 55 2 2 2	27.0 266.0 (mg/L) 70.0 785.0
Date Location WM2A-C WM2A Date Location WM2A-C WM2A UM2A	7-Jun-18 # Time 10:25 10:40 8-Jun-18 Time 10:30 10:20 9-Jun-18 # Time	Depth (m) 0.38 0.30 Depth (m) 0.38 0.40 Depth (m)	Temp 25.1 25.1 25.6 25.6	p (oC) p (oC) 25.1 25.6	DO (B.64 8.49 6.45 6.33	mg/L) mg/L) 8.6 6.4	DO DO 104.8 103.0 78.9 77.0	(%) (%) 103.9 - 78.0	Turbidi 28.3 27.3 354.0 337.0 Turbidi 259.0 268.0 over range Turbidi 5.1	ty (NTU) 27.8 345.5 ty (NTU) 263.5 over range	p 7.40 7.60 7.60	H H 7.4 7.6	SS 27 27 266 266 266 5S 67 73 800 770 5S 2	(mg/L) (mg/L) (mg/L)

Date	11-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
WAAA C	11.10	0.20	24.8	24.9	6.37		76.8	70.6	6.1	()	7.36	7.4	3	2.0
WM2A-C	11:10	0.20	24.8	24.8	6.82	6.6	82.4	79.6	5.8	6.0	7.36	7.4	3	3.0
	10.50	0.20	25.6	25.6	5.96	6.1	73.1	745	64.6	(11	7.17	7.2	52	EAE
WM2A	10:50	0.20	25.6	25.6	6.18	6.1	75.9	74.5	63.6	64.1	7.17	1.2	57	54.5

Date	12-Jun-18 #												
Location	Time	Depth (m)	Temp (oC	C) DO	(mg/L)	DO	(%)	Turbidi	ty (NTU)	pl	Н	SS(mg/L)
WM2A-C	11:45	0.20						4.2 4.1	4.2			2 2	2.0
WM2A	11:30	0.15			_			86.0 83.4	84.7			38 38	38.0

Date	13-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	Η	SS(1	mg/L)
WM2A-C	10.50	0.20	25.2	25.2	7.44	7.6	90.4	92.8	25.0	24.9	7.58	7.6	6	65
WM2A-C	10:50	0.20	25.2	25.2	7.84	/.6	95.1	92.8	24.6	24.8	7.58	/.6	7	6.5
WM2A	10.20	0.20	25.9	25.0	5.45	5.4	67.1		242.0	242.0	8.29	0.2	146	150.0
W WIZA	10:20	0.20	25.9	25.9	5.38	5.4	66.1	66.6	242.0	242.0	8.29	8.3	154	150.0

Date	14-Jun-18 #												
Location	Time	Depth (m)	Temp (oC)) DO (n	ng/L)	DO	(%)	Turbidi	ty (NTU)	p	Η	SS(mg/L)
WM2A-C	11:15	0.25						10.0	10.8			6	6.0
www.za-c	11.15	0.23						11.5	10.8			6	0.0
WM2A	11:00	0.20						91.1	90.5			54	54.0
WWWIZA	11.00	0.20						89.9	90.5			54	54.0

Date	15-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	H	SS((mg/L)
WM2A-C	10:25	0.20	24.5	24.5	7.44	7.4	89.3	88.3	14.3	14.3	7.10	7.1	<2	2.0
WMZA-C	10:25	0.20	24.5	24.5	7.28	7.4	87.3	00.5	14.2	14.5	7.10	7.1	2	2.0
WM2A	10:00	0.15	25.3	25.3	6.35	6.4	77.6	77.9	60.9	(5.1	7.18	7.2	39	40.5
WM2A	10:00	0.15	25.3	23.5	6.4	6.4	78.2	11.9	69.2	65.1	7.18	1.2	42	40.5

Date	16-Jun-18 #													
Location	Time	Depth (m)	Temp (oC)	DO (n	ng/L)	DO	(%)	Turbidi	ty (NTU)	pl	Н	SS(1	mg/L)
WM2A-C	9:55	0.22		_					6.5 5.7	6.1			<2 <2	<2
WM2A	10:05	0.20							24.2 23.9	24.1			15 15	15.0

Date	19-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(mg/L)
WM2A C	10.55	0.22	25.8	25.8	6.83	()	84.1	84.3	11.7	11.2	7.45	7.5	<2	2
WM2A-C	10:55	0.23	25.8	25.8	6.84	6.8	84.4	84.3	10.9	11.5	7.45	7.5	<2	<2
W/M/2 A	10.25	0.20	27.3	27.3	6.2	()	78.3	78.4	267.0		7.37	7.4	132	12(0
WM2A	10:35	0.20	27.3	27.5	6.21	6.2	78.4	/8.4	264.0	265.5	7.37	7.4	140	136.0

Date	20-Jun-18 #												
Location	Time	Depth (m)	Temp (oC	C)	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	pl	H	SS(1	mg/L)
WM2A-C	10:40	0.22						7.7 7.9	7.8			2 2	2.0
WM2A	10:30	0.20						24.1 23.8	24.0			11 11	11.0

Date	21-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	H	SS(1	mg/L)
WM2A-C	11.20	0.25	26.5	26.5	7.56	7.4	94.0	01.4	10.8	11.5	7.62	7.6	6	5.5
WM2A-C	11:20	0.25	26.5	26.5	7.14	7.4	88.8	91.4	12.1	11.5	7.62	7.6	5	5.5
WM2A	11:10	0.20	29.7	29.7	4.92	4.9	64.7	64.6	22.4	21.5	7.45	75	14	14.0
WW12A	11:10	0.20	29.7	29.1	4.9	4.9	64.5	04.0	20.6	21.5	7.45	7.5	14	14.0

Date	23-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	Н	SS(mg/L)
WM2A-C	11:10	0.28	25.5	25.5	7.96	8.0	97.4	97.6	97.9	101.5	7.80	7 9	20	21.0
WMZA-C	11:10	0.28	25.5	23.3	7.99	8.0	97.7	97.0	105.0	101.5	7.80	7.0	22	21.0
WM2A	10:55	0.20	26.3	26.3	7.46	75	92.5	92.7	561.0	596.0	7.00	7.0	207	201.0
WM2A	10:55	0.20	26.3	20.5	7.47	7.5	92.8	92.1	611.0	586.0	7.00	7.0	195	201.0

Date	25-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	Н	SS(mg/L)
WM2A-C	11:00	0.28	25.4	25.4	7.43	75	90.6	90.8	19.0	18.7	7.10	7 1	5	5 5
WMZA-C	11:00	0.28	25.4	23.4	7.47	7.5	90.9	90.8	18.4	10.7	7.10	/.1	6	5.5
WAADA	10.45	0.20	26.7	26.7	7.24	73	90.2	90.4	107.0	106.5	6.90	6.0	63	60.5
WW12A	M2A 10:45	0.20	26.7	20.7	7.34	7.5	90.5	90.4	106.0	100.5	6.90	6.9	58	00.5

Date	26-Jun-18 #									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity	y (NTU)	pН	SS(mg/L)
WM2A-C	12:00	0.31				7.1 7.1	7.1		6 6	6.0
WM2A	11:45	0.20				47.1 46.0	46.6		28 28	28.0

Date	27-Jun-18 #													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	pl	Н	SS(mg/L)
WM2A-C	11:00	0.25							7.3 6.6	6.9			6 6	6.0
WM2A	10:45	0.20							21.2 22.3	21.8			14 15	14.5

Date	28-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	pl	Η	SS(mg/L)
WM2A-C	11:45	0.25	25.7	25.7	7.73	77	94.7	94.6	21.5	22.1	7.30	7.2	17	18.0
WWIZA-C	11.45	0.23	25.7	23.1	7.72	1.1	94.4	94.0	22.7	22.1	7.30	7.5	19	16.0
WM2A	11:20	0.20	27.8	27.8	6.78	69	86.3	86.4	24.8	24.9	7.50	75	15	16.0
W WIZA	11:20	0.20	27.8	27.8	6.79	6.8	86.5	80.4	24.9	24.9	7.50	7.5	17	16.0

Date	30-Jun-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	H	SS(mg/L)
	10.47	0.21	26	26.0	7.76	7 9	95.6	06.2	8.3	0.2	6.20	()	4	4.0
WM2A-C	10:47	0.31	26	26.0	7.8	7.8	96.9	96.3	8.4	8.3	6.20	6.2	4	4.0
WM2A	10:59	0.17	27.6	27.6	7.24	7.2	91.0	91.3	12.0	12.5	6.60	6.6	14	145
WWWZA	10:59	0.17	27.6	27.0	7.25	1.2	91.5	91.5	13.0	12.5	6.60	6.6	15	14.5

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.59) – June 2018

Water Quality Monitoring Data for Contract 2 and 6

Date	2-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WM3-C	10:18	0.15	29.2 29.2	29.2	5.26 5.12	5.2	68.5 67.0	67.8	3.3 3.2	3.2	2.85 2.83	2.8	2	<2
WM3	10:30	0.15	29.1 29.1	29.1	6.64 6.2	6.4	86.7 81.0	83.9	13.0 13.2	13.1	5.99 5.99	6.0	10 8	9.0
Date	4-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
WM3-C	10:39	0.16	29.3 29.3	29.3	6.21 6.3	6.3	81.0 82.7	81.9	12.6 12.9	12.8	7.4 7.4	7.4	17 16	16.5
WM3	10:53	0.12	28.5 28.5	28.5	6.83 6.87	6.9	87.5 88.0	87.8	11.5 11.7	11.6	7.5 7.5	7.5	12 10	11.0
Date	6-Jun-18													
Location	Time	Depth (m)	Тетр	(oC)	DO (I	mg/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ıg/L)
WM3-C	11:35	0.20	26.1 26.1	26.1	5.33 5.26	5.3	65.6 64.7	65.2	71.5 70.0	70.8	9.07 9.07	9.1	56 58	57.0
	11100		20.1		5.20						2.07			
WM3	11:45	0.25	26.3	26.3	5.25 5.09	5.2	65.0 62.9	64.0	609.0 639.0	624.0	8.26	8.3	486 459	472.5
WM3 Date		0.25		26.3	5.25	5.2	65.0	64.0		624.0		8.3	486	472.5
	11:45	0.25	26.3		5.25 5.09		65.0				8.26 8.26	8.3 H	486 459	
Date	11:45 7-Jun-18 #		26.3 26.3		5.25		65.0 62.9		639.0		8.26 8.26		486	
Date Location	11:45 7-Jun-18 # Time	Depth (m)	26.3 26.3		5.25 5.09		65.0 62.9		639.0 Turbidit 72.1	y (NTU)	8.26 8.26		486 459 SS(n 58	ng/L)
Date Location WM3-C WM3	11:45 7-Jun-18 # Time 10:15 10:00	Depth (m) 0.30	26.3 26.3		5.25 5.09		65.0 62.9		639.0 Turbidit 72.1 67.8 69.8	y (NTU) 70.0	8.26 8.26		486 459 SS(n 58 58 58 58	ng/L) 58.0
Date Location WM3-C	11:45 7-Jun-18 # Time 10:15	Depth (m) 0.30	26.3 26.3	(oC)	5.25 5.09	mg/L)	65.0 62.9	(%)	639.0 Turbidit 72.1 67.8 69.8	y (NTU) 70.0 69.1	8.26 8.26		486 459 SS(n 58 58 58 58	ng/L) 58.0 54.0

Location	Time	Depth (m)	Тетр	(oC)	1) OC	ng/L)	DO	(%)	Turbidit	y (NTU)	p.	H	SS(n	1g/L)
WM3-C	10:50	0.20	25.5	25.5	6.22	60	75.9	75 0	238.0	240.0	8.99	9.0	121	122.5
WM3-C	10.50	0.20	25.5	25.5	6.18	6.2	75.6	75.8	242.0	240.0	8.99	9.0	124	122.3
WM3	11:00	1.20	25.4	25.4	6.08	6 1	74.2	74.1	89.3	89.5	8.09	Q 1	42	40.0
vv IVI S	11:00	1.20	25.4	23.4	6.06	0.1	73.9	/4.1	89.7	09.5	8.09	0.1	38	40.0

Date	11-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
	11.20	0.15	28.1	29.1	7.09	7.1	91.1	01.5	7.1	67	11.09	11.1	12	12.0
WM3-C	11:30	0.15	28.1	28.1	7.15	7.1	91.8	91.5	6.3	6.7	11.09	11.1	14	13.0
WM3	11:42	0.15	28.8	28.8	6.19	6.2	80.3	80.5	13.1	13.0	9.22	0.2	13	13.5
W WIS	11:42	0.15	28.8	20.0	6.21	0.2	80.6	80.5	12.8	15.0	9.22	9.2	14	15.5

Date	13-Jun-18													
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	p]	H	SS(n	ng/L)
WM3-C	11:10	0.15	26.9 26.9	26.9	5.82 6.04	5.9	74.7 75.9	75.3	15.5 16.6	16.1	6.86 6.86	6.9	15 17	16.0
WM3	11:20	0.17	27 27	27.0	6.78 6.79	6.8	85.1 85.2	85.2	73.5 73.6	73.6	6.91 6.91	6.9	49 53	51.0
Date	14-Jun-18 #													
Location	Time	Depth (m)	Тетр	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	p p	H	SS(n	ng/L)
WM3-C	10:00	0.15							4.2	3.6			17 17	17.0
WM3	10:10	0.15							33.6 32.7	33.2			30 30	30.0
Date	15-Jun-18				•									
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	H	SS(n	ng/L)
WM3-C	10:45	0.15	28.2 28.2	28.2	7.77	7.6	99.8 95.1	97.5	7.7 7.0	7.3	11.43 11.43	11.4	7	6.5
WM3	10:55	0.16	27.6 27.6	27.6	5.44 5.46	5.5	69.3 69.6	69.5	23.9 24.0	24.0	10.51 10.51	10.5	21 23	22.0
Date	16-Jun-18 #				•									
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	H	SS(n	ng/L)
WM3-C	9:40	0.15							4.2 3.9	4.0			4	4.0
WM3	9:30	0.15							8.5 7.3	7.9			4	4.0
Date	19-Jun-18	•												
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	H	SS(n	ng/L)
WM3-C	11:45	0.15	29.8 29.8	29.8	6.93 6.95	6.9	91.1 92.0	91.6	4.4 3.2	3.8	2.98 2.98	3.0	<2 <2	<2
WM3	11:55	0.15	29 29	29.0	6.43 6.38	6.4	83.6 83.1	83.4	5.3 5.8	5.5	5.81 5.81	5.8	3	3.0

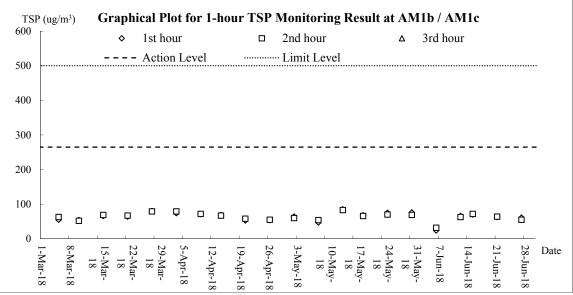
Date	21-Jun-18													
Location	Time	Depth (m)	Тетр	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(n	ng/L)
	11.50	0.15	29.9	20.0	4.96	4.0	65.4	64.9	15.6	14.0	8.8	0.0	28	20.0
WM3-C	11:50	0.15	29.9	29.9	4.84	4.9	64.1	64.8	14.1	14.9	8.8	8.8	30	29.0
WM3	12:00	0.15	29.8	29.8	5.33	5.2	69.5	68.7	12.7	12.8	8.07	Q 1	7	7.0
W W15	12:00	0.15	29.8	29.8	5.18	5.5	67.9	08.7	12.9	12.8	8.07	0.1	7	7.0

Date	23-Jun-18														
Location	Time	Depth (m)	Temp	Temp (oC)		DO (mg/L)		DO (%)		Turbidity (NTU)		pH		SS(mg/L)	
	11:30	0.20	26.5	26.5	7.35	7.4	91.3	91.4	222.0	223.5	7.3	7.2	195	189.5	
WM3-C			26.5		7.37		91.5		225.0		7.3	7.5	184		
WM3	12:00	0.50	26.4	26.4	7.49	7.4	93.1	92.6	266.0	263.0	7.3	- 7.3	213	204.5	
VV IVI 5			26.4	20.4	26.4 7.27	7.4	92.0		260.0		7.3		196		

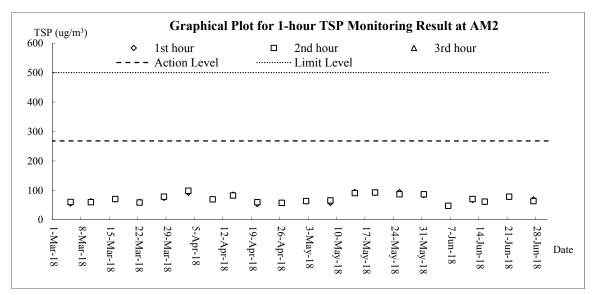
Date	25-Jun-18														
Location	Time	Depth (m)	Тетр	Temp (oC)		DO (mg/L)		DO (%)		Turbidity (NTU)		pH		SS(mg/L)	
	11:50	0.15	27.9	27.9	7.54	7.5	96.2	96.3	11.0	10.4	10.1	10.1	<2	Ç.	
WM3-C			27.9		7.55		96.4		9.8		10.1	10.1	<2	<2	
W/M2	12:00	0.15	26.7	26.7	6.4	6.5	79.2	80.4	10.5	10.7	7.7	7.7	5	4.0	
WM3			26.7	20.7	6.54		81.6		10.8		7.7		3		

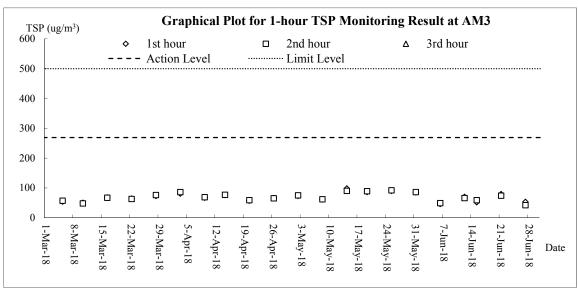
Date	28-Jun-18													
Location	Time	Depth (m)	Temp	Temp (oC)		DO (mg/L)		DO (%)		Turbidity (NTU)		pH		ng/L)
WM2 C	12:05	0.15	29.4	- 29.4	7.2	7.2	94.6	94.9	3.8	3.4	10.5	10.5	10	9.0
WM3-C			29.4		7.26		95.1		3.0		10.5	10.5	8	
WM2	12:20	0.15	30.3	30.3 <u>6.68</u> 6.75	6.68	67	89.1	80.4	12.9	12.1	8.7	8.7	13	12.5
WM3			30.3		6.7	89.7	89.4	13.2	15.1	8.7	0.7	12	12.5	

Date	30-Jun-18													
Location	Time	Depth (m)	Temp	Temp (oC)		DO (mg/L)		DO (%)		Turbidity (NTU)		рН		ng/L)
	10:27	0.20	29.1	29.1 7.51 7.55	7.51	7.5	97.7	97.9	5.6	5.0	7.1	7.1	4	4.5
WM3-C			29.1		7.55		98.0		5.6	5.6	7.1	/.1	5	
WM2	10:13	0.15	28.3	28.2	6.71	6.8	86.4	87.0	12.8	13.0	6.9	6.9	12	11.5
WM3			28.3	28.3	6.79		87.5		13.1	13.0	6.9		11	

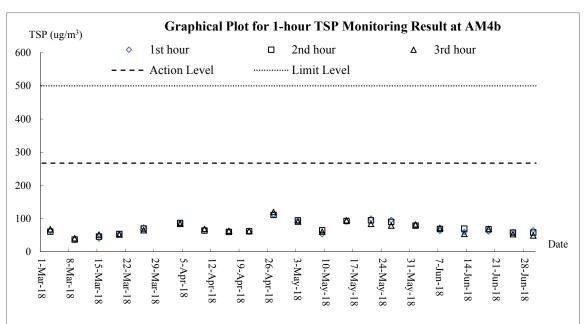

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

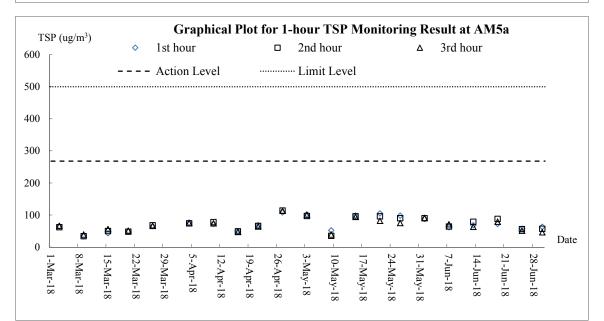
Action Level
Limit Level

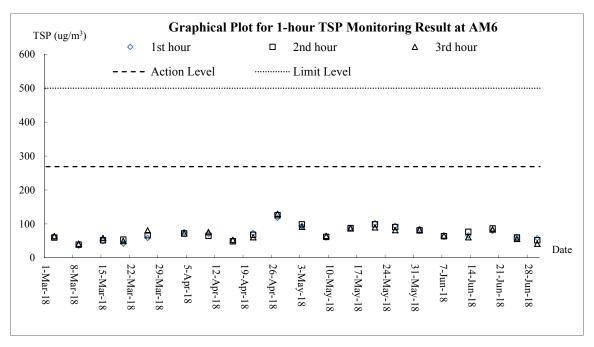

Appendix J

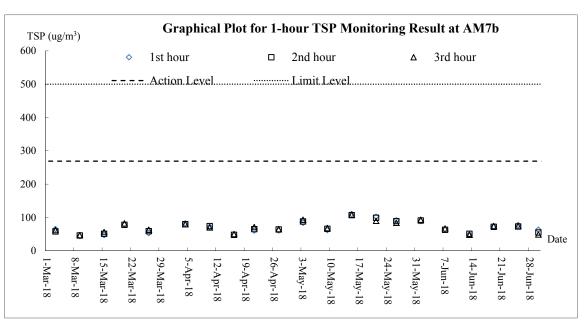

Graphical Plots for Monitoring Result

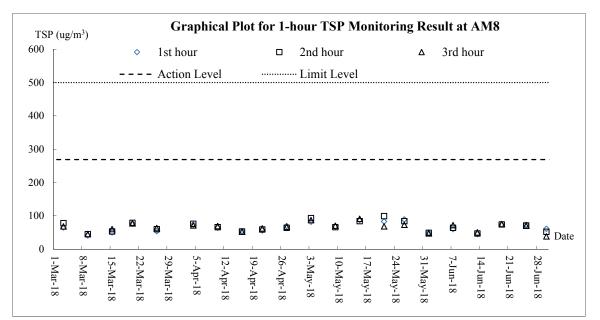
<u>Air Quality – 1-hour TSP</u>

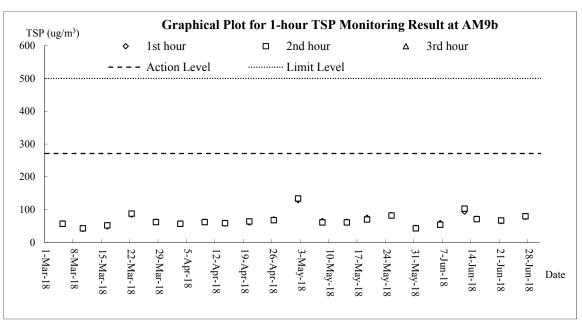


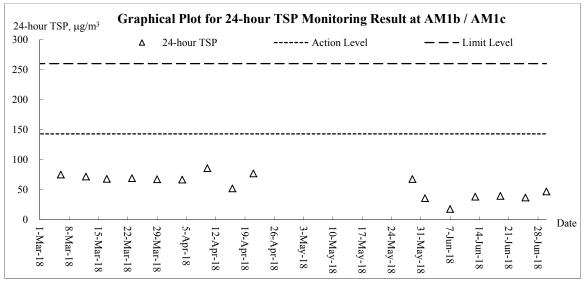

Note: Air Quality Monitoring Location AM1b was suspended on 28 April 2018 due to the land issues and it was relocated to AM1c since 29 May 2018.

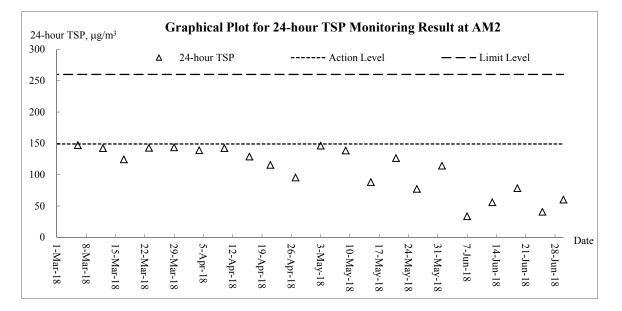


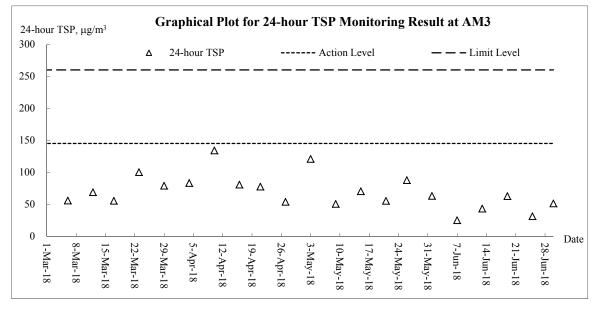


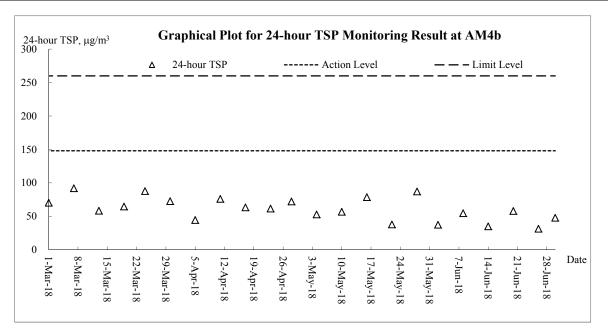


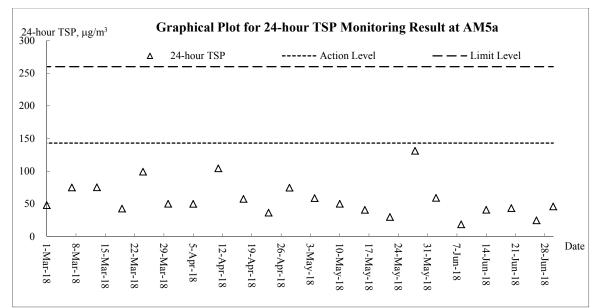


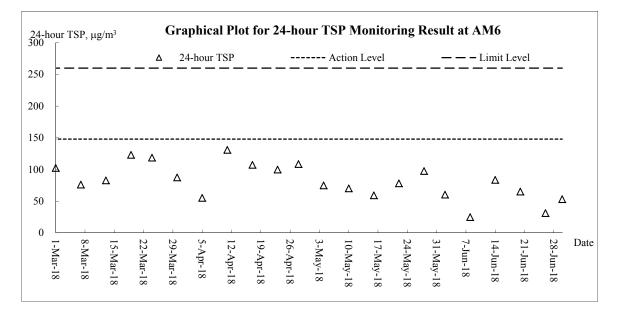


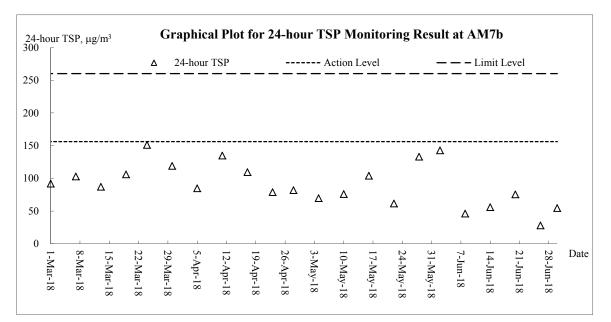


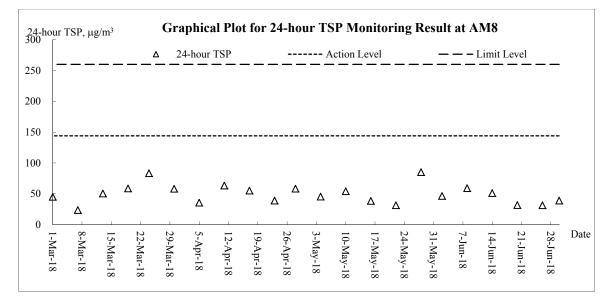


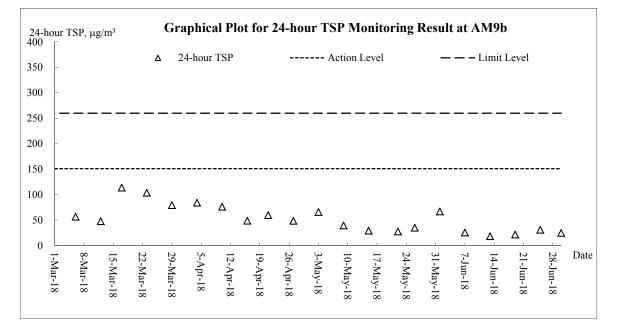

Air Quality – 24-hour TSP

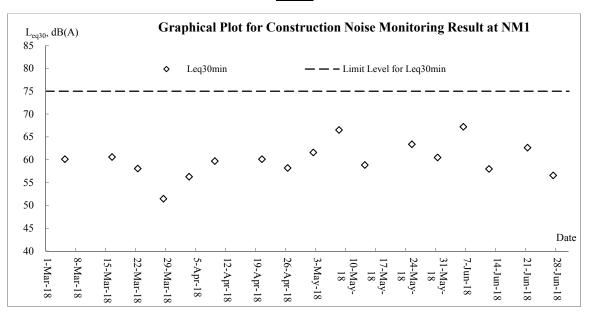


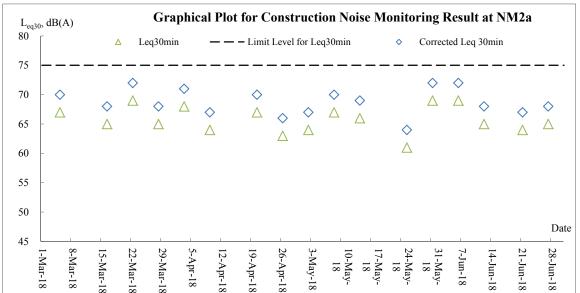

Note: Air Quality Monitoring Location AM1b was suspended on 28 April 2018 due to the land issues and it was relocated to AM1c since 29 May 2018.

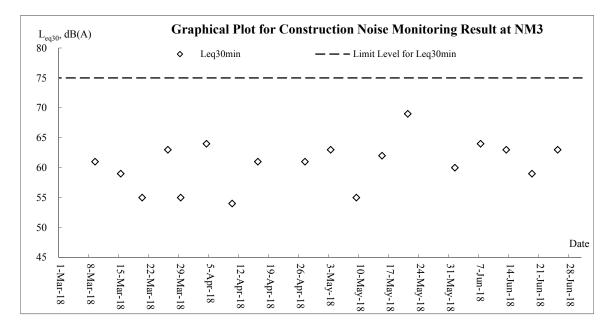


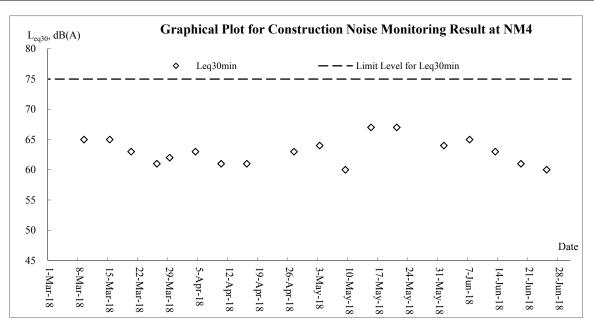


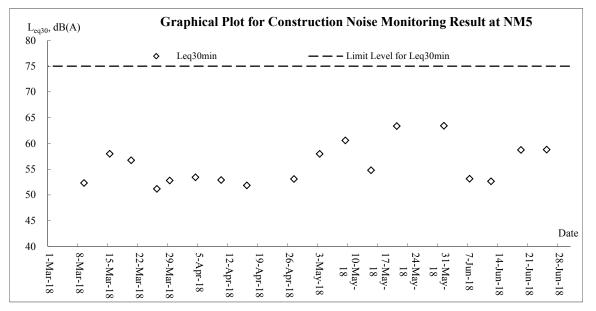


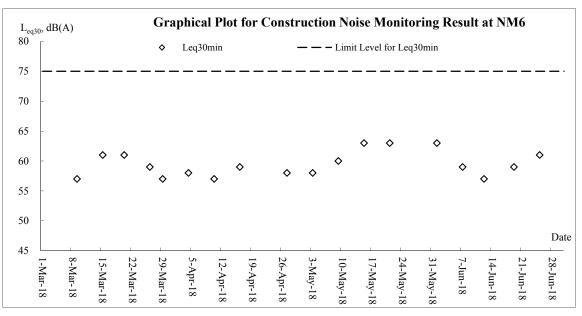


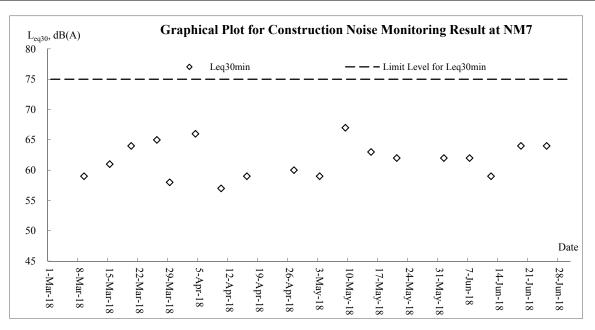


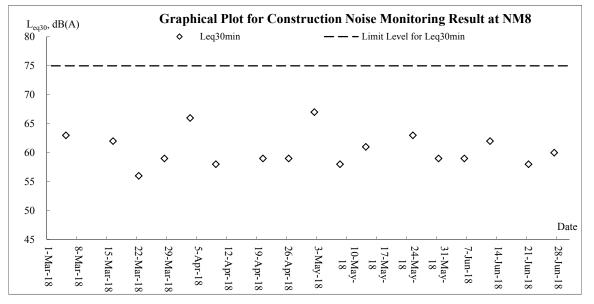


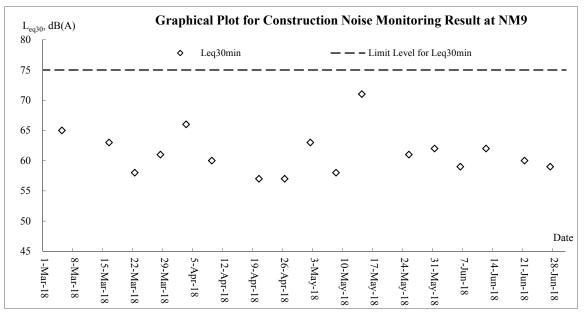


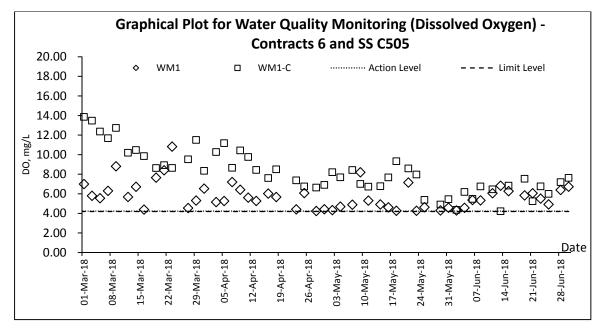


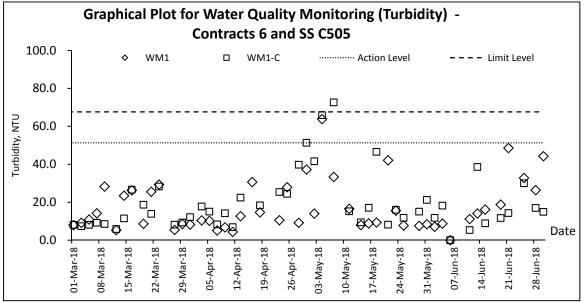


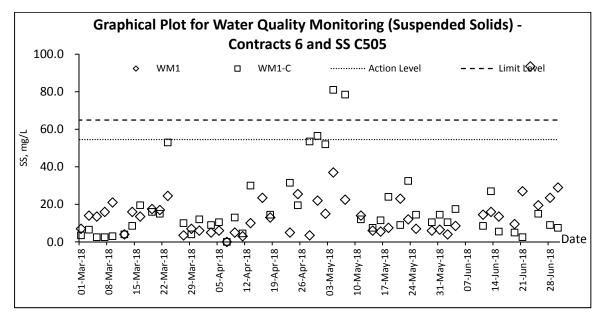


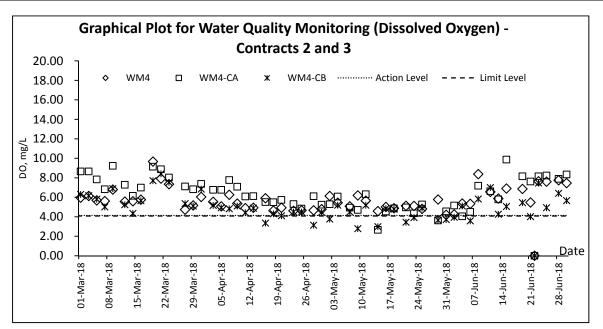

Noise

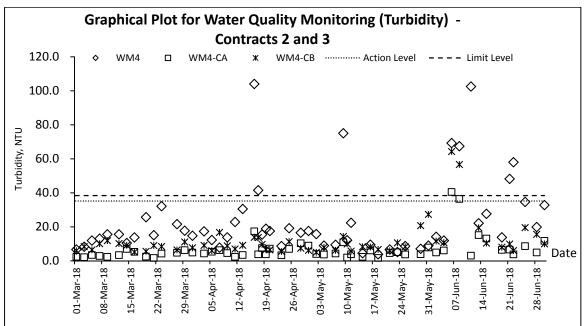


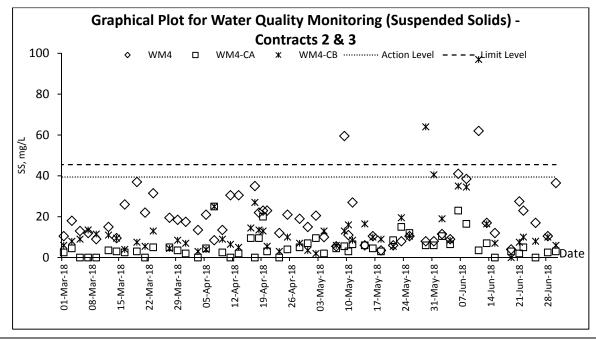


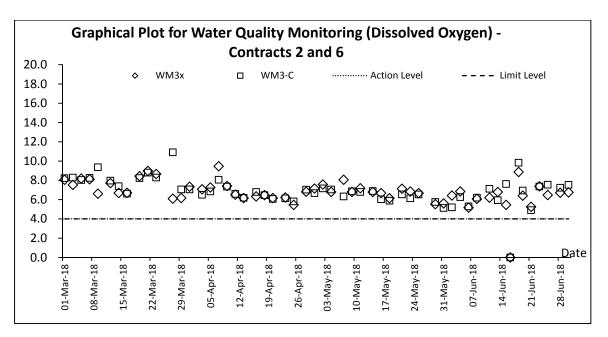


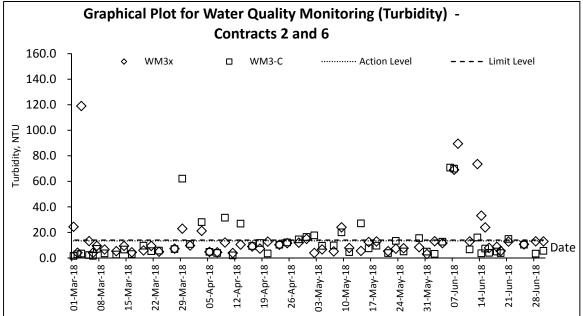

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.59) – June 2018

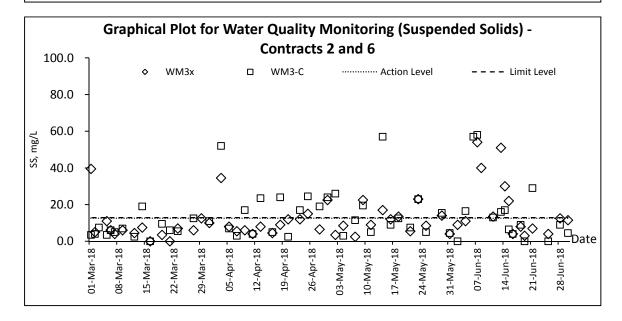

L _{eq.}	₃₀ , dB	6(A)			Gra	aphio	cal Plo	t for C	Const	ructi	on N	oise N	Ionito	ring	Resu	lt at N	M10	
80	Γ		♦ Leq30min			— — — Limit Level for Leq30min						O Corrected Leq 30min						
75	-																	·
70	-	0											0					
		¢	0									0	\$	0			ο	
65	-	•	\$			0	0	-				\$		\$		0	\$	
60	-			~	0	\$	\diamond	0 ♦	0		0				0	\$		0
				0 ♦	\$			\diamond	\$		\$				\$			\$
55	-			~						0								
50	_									\$								
																		Date
45	 	~		- 23	- 29	ې ب		- 19	- 20	ω	10		- 2	ω.	- 7-	1_	2	22
	1-Mar-18	8-Mar-18	15-Mar-18	22-Mar-18	9-Ma	-Apr-	2-Api	9-Арі	5-Api	-May	0-Ma	7-Ma	4-Ma	l-Ma	-Jun-	14-Jun-18	1-Jun-18	28-Jun-18
	-18	-18	r-18	r-18	r-18	18	12-Apr-18	r-18	r-18	-18	y-18	y-18	y-18	y-18	18	1-18	-18	-18

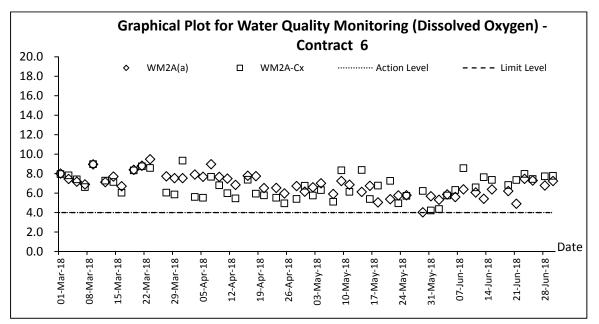

Water Quality

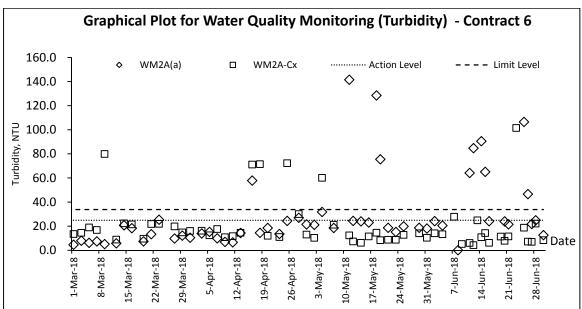


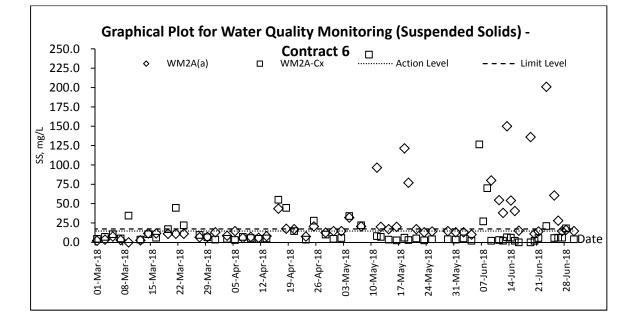









Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\2018\59th (June 2018)\R1659v2.docx



Appendix K

Meteorological Data

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.59) – June 2018

				,	Fa Kwu I	Ling Station	1
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction
1-Jun-18	Fri	Fine and very hot. Light to moderate southwesterly winds.	0	31	8.2	70	E/SE
2-Jun-18	Sat	Fine and very hot. Light to moderate southwesterly winds.	Trace	30	7.9	69	Е
3-Jun-18	Sun	Mainly cloudy with a few showers and thunderstorms.	Trace	30.2	10.5	66	Е
4-Jun-18	Mon	Mainly cloudy with a few showers and thunderstorms.	12.4	30	10.8	72.2	E/NE
5-Jun-18	Tue	Cloudy with squally showers and thunderstorms.	28.2	28.5	9.3	83	E/NE
6-Jun-18	Wed	occasionally strong offshore and on high ground	58.3	27.1	7	92.5	E/NE
7-Jun-18	Thu	Mainly cloudy with a few squally showers and thunderstorms	47.4	27.5	8	85	E/NE
8-Jun-18	Fri	Mainly cloudy with a few squally showers and thunderstorms	70.2	27.2	10.1	86.2	E/SE
9-Jun-18	Sat	Mainly fine. Very hot and dry in the afternoon. Light winds.	4.8	28.4	8.2	73	N/NW
10-Jun-18	Sun	Mainly fine. Very hot and dry in the afternoon. Light winds.	0	29.6	7.3	68.5	N/NW
11-Jun-18	Mon	Mainly fine. Very hot and dry in the afternoon. Light winds.	0	29.3	6	66.2	N/NW
12-Jun-18	Tue	Mainly cloudy with showers and a few thunderstorms.	39.6	27.6	8.3	81.5	E/NE
13-Jun-18	Wed	Cloudy. Heavy showers at first.	109.3	27	7	85.7	E/NE
14-Jun-18	Thu	Mainly cloudy with sunny intervals.	1.3	26.7	5.6	82	N/NW
15-Jun-18	Fri	Mainly cloudy with isolated showers. Sunny periods	0.2	26.8	6.5	77	N/NW
16-Jun-18	Sat	Mainly cloudy with sunny intervals.	0	28.5	7.8	75	N/NW
17-Jun-18	Sun	Mainly cloudy with isolated showers. Sunny periods	Trace	28.7	8.1	72	S/SW
18-Jun-18	Mon	Mainly cloudy with sunny intervals.	Trace	29.2	8	73.7	S/SW
19-Jun-18	Tue	Hot with sunny periods.	Trace	29.5	8.2	79.2	S/SW
20-Jun-18	Wed	Hot with sunny periods.	Trace	29.5	6.5	82	SW
21-Jun-18	Thu	Mainly cloudy with a few showers.	2.6	29.6	6.5	80	S/SW
22-Jun-18	Fri	Mainly cloudy with a few showers.	32.9	27.8	7.5	85	S/SE
23-Jun-18	Sat	Mainly cloudy with a few showers.	25.6	28.4	7.5	84	S/SE
24-Jun-18	Sun	Hot with sunny periods.	18.1	28.8	7.6	81.5	E/SE
25-Jun-18	Mon	Mainly cloudy with occasional showers	6.2	28	10	85.5	E/SE
26-Jun-18	Tue	Sunny periods. It will be hot.	1.7	28.3	6	84	E/SE
27-Jun-18	Wed	Mainly cloudy with a few showers	Trace	28.1	9.7	81.5	E/NE
28-Jun-18	Thu	Mainly fine. Very hot	0	28.6	6.1	74.5	SW
29-Jun-18	Fri	Mainly fine apart from isolated showers	Trace	29.5	7	75.7	W/SW
30-Jun-18	Sat	Mainly fine. Very hot with isolated showers	Trace	29.7	6.8	74.5	W/SW

Appendix L

Waste Flow Table

APPENDIX G: MONTHLY SUMMARY WASTE FLOW TABLE

Contract No. CV/2012/08 Liantang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works – Contract 2

FOR: <u>2018</u>

		Actual Quantiti	ies of Inert C&D	Materials Gen	erated Monthly	,	Ac	tual Quantities	of C&D Wastes	Generated Mo	onthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill*	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse#
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000m ³)
Jan	86.6400	0.0000	0.0000	5.2900	81.3500	1.6570	45.0000	0.3100	2.8000	4.5760	0.6575
Feb	33.2700	0.0000	0.0000	3.6700	29.6000	1.3470	32.0000	0.2500	2.4000	1.9500	0.2850
Mar	39.7600	0.0000	0.0000	3.4600	36.3000	1.3380	36.0000	0.3050	2.7000	9.8560	0.6290
Apr	55.5979	0.0000	0.0000	3.3680	52.2299	1.2470	33.7800	0.3240	2.5000	0.0000	0.5748
May	12.9815	0.0000	0.0000	4.6780	8.3035	1.1470	30.1400	0.3040	2.6000	44.9600	0.7056
June	8.5257	0.0000	0.0000	3.1916	5.3341	1.2200	31.7800	0.2870	2.3000	0.1760	0.7534
Sub-total	236.7751	0.0000	0.0000	23.6576	213.1175	7.9560	208.7000	1.7800	15.3000	61.5180	3.6053
July	0.0000										
Aug	0.0000										
Sep	0.0000										
Oct	0.0000										
Nov	0.0000										l l
Dec	0.0000										
Sub-total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	236.7751	0.0000	0.0000	23.6576	213.1175	7.9560	208.7000	1.7800	15.3000	61.5180	3.6053

Notes:

(1) The performance targets are given in PS 1.100(14)(a)

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials.

(5) Assumption: 1m³ of inert material weight 2.2 tonne 1m3 of non-inert material weight 1.6 tonne 1m3 of chemical waste weight 0.88 tonne

Contract No. CV/2012/08 Liantang / Heung Yuen Wai Boundary Crossing Control Point Site Formation and Infrastructure Works – Contract 2

				Forecast of To	tal Quantities of	C&D Materials	to be Generated t	from the Project			
Forecast		Hard Rock &						Paper/	Plastics		
Made at	Total Quantity	Large Broken	Reused in the	Reused in other	Disposed as	Imported Fill	Metals	cardboard		Chemicals	Others, e.g.
the End of	Generated	Concrete	Contract	Projects	Public Fill	1		packaging	(see Note 3)	Waste	general refuse
the Project											
Month-	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000m3)
Year											
Dec-13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	220.6270	0.0000	0.0000	0.0000	0.0000
Dec-14	425.4406	0.0000	2.7362	376.3945	46.3099	5.6245	3.2100	0.4390	0.0070	10.8800	2.2609
Dec-15	570.9459	0.0000	20.8159	543.2162	6.9138	4.5492	37.6310	3.9220	11.9700	16.1920	1.1696
Dec-16	905.0989	0.0000	7.4372	427.7834	469.8783	24.8350	430.5200	3.8500	18.7262	34.2936	1.9720
Dec-17	741.9482	0.0000	8.0385	175.6792	558.2305	78.3865	1681.8000	4.0700	30.5175	48.7906	5.9610
Dec-18	236.7751	0.0000	0.0000	23.6576	213.1175	7.9560	208.7000	1.7800	15.3000	61.5180	3.6053
Total	2880.2087	0.0000	39.0278	1546.7310	1294.4500	121.3512	2582.4880	14.0610	76.5207	171.6742	14.9688

Monthly Summary Waste Flow Table for 2018 (year)

	Actua	al Quantities	of Inert C&D	Materials G	enerated Mo	onthly	Actual	Quantities o	f C&D Wastes	Generated	Monthly
		Hard Rock									
	Total	and Large	Reused in	Reused in	Disposed			Paper/			Others, e.g.
Month	Quantity	Broken	the	other	as Public	Imported		cardboard		Chemical	general
	Generated	Concrete	Contract	Projects	Fill	Fill	Metals	packaging	Plastics	Waste	refuse
	(in '000m ³)	(in m ³)	(in '000m ³)								
Jan	3.089	0.304	0.060	0.000	2.725	0.923	0.000	0.000	0.000	0.000	0.150
Feb	2.697	0.256	0.150	0.000	2.292	1.144	0.000	0.000	0.000	0.000	0.095
Mar	1.524	0.141	0.120	0.000	1.263	0.211	0.000	0.000	0.000	0.000	0.085
Apr	2.880	0.786	0.360	0.000	1.734	0.788	0.000	0.000	0.000	0.000	0.125
May	1.164	0.290	0.101	0.000	0.773	0.185	0.000	0.000	0.000	0.000	0.150
Jun	0.862	0.082	0.515	0.000	0.265	0.000	0.000	0.000	0.000	0.000	0.110
Sub-total	12.216	1.859	1.306	0.000	9.051	3.251	0.000	0.000	0.000	0.000	0.715
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	12.216	1.859	1.306	0.000	9.051	3.251	0.000	0.000	0.000	0.000	0.715

Note: 1. Assume the density of soil fill is 2 ton/m³.

2. Assume the density of rock and broken concrete is 2.5 ton/m^3 .

3. Assume each truck of C&D wastes is $5m^3$.

4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.

5. The slurry and bentonite are disposed at Tseung Kwun O 137.

6. The non-inert C&D wastes are disposed at NENT.

7. Assume the density of metal is $7,850 \text{ kg/m}^3$.

8. Assume the density of plastic is 941 kg/m³.

9. Assume the density of paper is 800 kg/m^3 .

	Forecast of Total Quantities of C&D Materials to be Generated from the Contract												
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Diposal as Public Fill	Imported Fill	Metals	Paper/card board packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse			
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)			
52.5	5.2	12.3	0.0	35.0	41.8	5.0	1.0	1.0	0.5	44.8			

Notes: (1) The performance targets are given in PS Clause 6(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works if equal to or exceed 50,000 m³.

SUMMARY TABLE FOR WORK PROCESSES OR ACTIVITIES REQUIRING TIMBER FOR TEMPORARY WORKS

Contract No.: <u>CV/2012/09</u>

Contract Title: Liantang /Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 3

Item No.	Description of Works Process or Activity [see note (a) below]	Justifications for Using Timber in Temporary Construction Works	Est. Quantities of Timber Used (m ³)	Actual Quantities Used (m ³)	Remarks
1	Formwork for Construction of Retaining Wall NB67	Easy handling by manpower	182.33	182.33	
3	Formwork for Construction of Retaining Wall NB69	Easy handling by manpower	81.94	81.94	
4	Formwork for Construction of Retaining Wall NB72	Easy handling by manpower	227.59	227.59	
5	Formwork for Construction of Retaining Wall NB73	Easy handling by manpower	24.03	24.03	
6	Formwork for Construction of Retaining Wall NB71	Easy handling by manpower	33.00	33.00	
7	Formwork for Construction of Retaining Wall FR32	Easy handling by manpower	98.40	98.40	
8	Formwork for Construction of Drainage	Easy handling by manpower	150.00	150.00	
		Total Estimated Quantity of Timber Used	797.29		

- Notes: (a) The Contractor shall list out all the work items requiring timber for use in temporary construction works. Several minor work items may be grouped into one for ease of updating.
 - (b) The summary table shall be submitted to the Engineer's Representative monthly together with the Waste Flow Table for review and monitoring in accordance with the PS Clause 25.24(11)..

Name of Department: CEDD

Appendix A

Contract No.: <u>NE/2014/02</u>

		Actua	al Quantities of Inert C&D	Materials Generated M			Actual Quantit	ies of C&D Wastes Gen	erated Monthly		
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan-18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb-18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar-18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr-18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May-18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun-18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul-18											
Aug-18											
Sep-18											
Oct-18											
Nov-18											
Dec-18											
Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Monthly Summary Waste Flow Table for 2018

	Forecast of Tota	al Quantities of C&D Mat	erials to be Generated fro	om the Contract*						
Total Quantity Generated	Reused in the Contract Disposed as Public Fill Imported Fill						Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
0.500	0.000	0.000	0.000	0.500	0.000	0.500	0.200	0.000	0.000	0.200

Notes :

(1) The performance targets are given in PS Clause 1.84(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Sites.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

(4) Estimate 6m3 capacity per dump truck

Monthly Summary Waste Flow Table for <u>2018</u> (year)

Name of Person completing the record: K.M. Lui (EO)

Project : Li	0 0	0	2		Formation and					Contract No.: CV	
	Ad	ctual Quantitie	s of Inert C&I	O Materials G	enerated Month	ly	Actua	al Quantities of	of C&D Waste	es Generated M	Ionthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan	4.152	0	0.629	1.947	1.576	0	0	0.240	0	0	0.892
Feb	2.740	0	0.867	0.544	1.329	0	0	0.402	0	0	0.578
Mar	3.269	0	1.581	0.969	0.719	0	0	0.380	0	0	0.725
Apr	2.901	0	0.255	1.955	0.691	0	0	0.360	0	0	0.921
May	3.194	0	0.068	1.964	1.162	0	0	0.384	0	0	1.340
Jun	2.206	0	0	0.9775	1.228	0	0	0.270	0	0	0.714
Sub-total	18.462	0.000	3.400	8.357	6.705	0.000	0.000	2.036	0.000	0.000	5.170
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	1016.856	0.000	166.627	279.000	571.230	53.939	0.000	8.415	0.007	34.045	13.921

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.

(3) Broken concrete for recycling into aggregates.

MONTHLY SUMMARY WASTE FLOW TABLE

NE/2014/03

Name of Department: CEDD

 Contract Title:
 Liantang/ Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works – Contract 7
 Contract No.:

Actual Quantities of Inert C&D Materials Generated Monthly Actual Quantities of Non-Inert C&D Wastes Generated								stes Generated Mor	nthly		
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastic (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
Jan	0.015	0	0	0	0.015	0	14.5	0.5	0.001	0	0.15
Feb	0	0	0	0	0	0	9	0.18	0.001	0	0.13
Mar	0.005	0	0	0	0.005	0	6	0.15	0.001	0	0.2
Apr	1.1	0	0	0	1.1	0	6.6	0.22	0.001	0	0.3
May	0.077	0	0	0	0.077	0	1.3	0.15	0.001	0	0.1
June	0	0	0	0	0	0	6	0.4	0.001	0	0.05
Sub-total	1.197	0	0	0	1.197	0	43.4	1.6	0.006	0	0.93
July											
Aug											
Sept											
Oct											
Nov											
Dec											
Total	1.197	0	0	0	1.197	0	43.4	1.6	0.006	0	0.930

Monthly Summary Waste Flow Table for <u>2018</u> (year)

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Appendix I

Architectural Services Department

Form No. D/OI.03/09.002

Contract No. / Works Order No.: - SSC505

Monthly Summary Waste Flow Table for 2018 [year] [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

		Actual Quantities of In	ert Construction Waste Ge	nerated Monthly	
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Broken Concrete (see Note 4)	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)
Jan	5.298	0.646	0.160	0.000	4.492
Feb	7.243	0.572	0.320	0.000	6.351
Mar	11.241	0.831	0.225	0.000	10.186
Apr	3.717	1.458	0.257	0.000	2.002
May	5.346	0.788	0.300	0.000	4.258
Jun	6.828	0.661	0.376	0.000	5.792
Sub-total	39.672	4.956	1.638	0.000	33.079
Jul					
Aug					
Sep					
Oct					
Nov					
Dec					
Total	39.672	4.956	1.638	0.000	33.079

Architectural Services Department

Form No. D/OI.03/09.002

					Actual Qua	ntities of Nor	i-inert Constr	uction Waste	Generated M	onthly			
Month	Tim	ber	Me	tals	Paper/ ca packa		Plas (see N	stics lote 3)	Chemica	al Waste		ecyclable see Page 3)	General Refuse disposed of at Landfill
	(in '00	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '000m ³)
	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated
Jan	0.000	0.000	375.870	375.870	0.220	0.220	0.032	0.032	0.000	0.000	0.000	0.000	1.918
Feb	0.000	0.000	720.120	720.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.223
Mar	0.000	0.000	220.860	220.860	0.830	0.830	0.005	0.005	0.000	0.000	0.005	0.005	2.711
Apr	0.000	0.000	202.130	202.130	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.470
May	0.000	0.000	294.330	294.330	0.000	0.000	0.042	0.042	0.000	0.000	0.000	0.000	2.490
Jun	0.000	0.000	138.850	138.850	0.990	0.990	0.000	0.000	1.200	0.000	0.000	0.000	2.997
Sub-total	0.000	0.000	1,952.160	1,952.160	2.040	2.040	0.079	0.079	1.200	0.000	0.005	0.005	14.809
Jul													
Aug													
Sep													
Oct													
Nov													
Dec													
Total	0.000	0.000	1,952.160	1,952.160	2.040	2.040	0.079	0.079	1.200	0.000	0.005	0.005	14.809

Description of mode and details of recycling if any for the month e.g. XX kg of used timber was sent to YY site for transformation into fertilizers									
138.85 tons of scrap metals were sent to Wai Hung Metal Ltd. for recycling	1,321.10 tons of broken concrete were sent to Tailor Recycled Aggregates Ltd. for recycling.	990.0 kg of paper were sent to Lau Choi Kee Papers Co. Ltd. for recycling.							

Notes: (1) The performance targets are given in the Particular Specification on Environmental Management Plan.

- (2) The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (4) Broken concrete for recycling into aggregates.

(5) If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to 6.5 m^3 by volume.

Appendix M

Implementation Schedule for Environmental Mitigation Measures

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
Air Quali	ty Impact (Construction)					
3.6.1.1	2.1	 General Dust Control Measures The following dust suppression measures should be implemented: Frequent water spraying for active construction areas (4 times per day for active areas in Po Kak Tsai and 8 times per day for all other active areas), including areas with heavy construction and slope cutting activities 80% of stockpile areas should be covered by impervious sheets Speed of trucks within the site should be controlled to about 10 km/hr All haul roads within the site should be paved to avoid dust 	To minimize adverse dust emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		emission due to vehicular movement					
3.6.1.2	2.1	Best Practice for Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (Construction Dust) Regulation should be adopted to further reduce the construction dust impacts of the Project. These best practices include: <i>Good site management</i>	emission generated	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		 The Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. 					
		 Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimize the release of visible dust emission. 					
		 Any piles of materials accumulated on or around the work areas should be cleaned up regularly. 					
		 Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimizing generation of fugitive dust emissions. 					
		 The material should be handled properly to prevent fugitive dust emission before cleaning. Disturbed Parts of the Roads 					
		 Each and every main temporary access should be paved with 					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for th
	Ref.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
		concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or					
		 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 					
		Exposed Earth					
		Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies.					
		Loading, Unloading or Transfer of Dusty Materials					
		 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 					
		Debris Handling					
		 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 					
		 Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped. 					
		Transport of Dusty Materials					
		 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards. 					
		Wheel washing					
		Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Use of vehicles					
		Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		 Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit. 					
		 Blasting The areas within 30m from the blasting area should be wetted with water prior to blasting. 					
Air Quali	ty Impact (Operation)					
3.5.2.2	2.2	 The following odour containment and control measures will be provided for the proposed sewage treatment work at the BCP site: The treatment work will be totally enclosed. Negative pressure ventilation will be provided within the enclosure to avoid any fugitive odorous emission from the treatment work. Further odour containment will be achieved by covering or confining the sewage channels, sewage tanks, and equipment with potential odour emission. Proper mixing will be provided at the equalization and sludge holding tanks to prevent sewage septicity. Chemical or biological deodorisation facilities with a minimum odour removal efficiency of 90% will be provided to treat potential odorous emissions from the treatment plant including sewage channels / tanks, filter press and screening facilities so as to minimize any potential odour impact to the nearby ASRs. 	To minimize potential odour impact from operation of the proposed sewage treatment work at BCP	DSD	BCP	Operation Phase	EIA recommendation
Noise Im	pact (Cons	truction)					
4.4.1.4	3.1	Adoption of Quieter PME Use of the recommended quieter PME such as those given in the BS5228: Part 1:2009 and presented in Table 4.14 , which can be found in Hong Kong.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and Noise Control Ordinance (NCO)

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
4.4.1.4	3.1	Use of Movable Noise Barrier The use of movable barrier for certain PME can further alleviate the construction noise impacts. In general, a 5 dB(A) reduction for movable PME and 10 dB(A) for stationary PME can be achieved depending on the actual design of the movable noise barrier. The Contractor shall be responsible for design of the movable noise barrier with due consideration given to the size of the PME and the requirement for intercepting the line of sight between the NSRs and PME. Barrier material with surface mass in excess of 7 kg/m ² is recommended to achieve the predicted screening effect.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Enclosure/ Acoustic Shed The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the GW-TM.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	3.1 Use of Noise Insulating Fabric Noise insulating fabric can be adopted for certain PME (e.g. drill rig, pilling auger etc). The insulating fabric should be lapped such that there are no openings or gaps on the joints. Technical data from manufacturers state that by using the Fabric, a noise reduction of over 10 dB(A) can be achieved on noise level.		Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO

			Objectives of the	Who to			What requirements	
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Recommended Measure	implement the	Location of the measure	When to implement the	or standards for the measure to	
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?	
4.4.1.4	3.1	Good Site Practice	To minimize the	Contractors	Construction	During	EIA recommendation,	
		The good site practices listed below should be followed during each phase of construction:	construction air- borne noise impact		Work Sites	Construction	EIAO and NCO	
		• Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;						
		 Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme; 						
		• Mobile plant, if any, should be sited as far from NSRs as possible;						
		 Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 						
		• Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and						
		• Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities.						
Noise Im	pact (Oper	ation)						
		Road Traffic Noise						
Table 4.42 and Figure 4.20.1 to 4.20.4	3.2	Erection of noise barrier/ enclosure along the viaduct section.	To minimize the road traffic noise along the connecting road of BCP	Contractor	Loi Tung and Fanling Highway Interchange	Before Operation	EIAO and NCO	
		Fixed Plant Noise						
Table 4.46	3.2	Specification of the maximum allowable sound power levels of the proposed fixed plants during daytime and night-time.	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIA recommendation, EIAO and NCO	

EIA Ref.	EM&A	nitoring and Audit Manual Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	Ref.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
4.5.2.4	3.2	 The following noise reduction measures shall be considered as far as practicable during operation: Choose quieter plant such as those which have been effectively silenced; Include noise levels specification when ordering new plant (including chillier and E/M equipment); Locate fixed plant/louver away from any NSRs as far as practicable; Locate fixed plant in walled plant rooms or in specially designed enclosures; Locate noisy machines in a basement or a completely separate building; Install direct noise mitigation measures including silencers, acoustic louvers and acoustic enclosure where necessary; and Develop and implement a regularly scheduled plant maintenance 	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIAO and NCO
		programme so that equipment is properly operated and serviced in order to maintain a controlled level of noise.					
<u>water QL</u> 5.6.1.1	4.1	ct (Construction) Construction site runoff and drainage	To control site	Contractor	Construction	Construction	Practice Note for
0.0.1.1	4.1	 Construction site runon and drainage The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts: At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system should be 	runoff and drainage; prevent high sediment loading from reaching the nearby watercourses	Contractor	Works Sites	Phase	Professional Persons on Construction Site Drainage (ProPECC Note PN 1/94)

 The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.

construction.

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	Implement the	What requirements or standards for the measure to	
			& Main Concerns to address	measure?	incusure	measure?	achieve?	
		Temporary ditches should be provided to facilitate the runoff discharge into stormwater drainage system through a sediment/silt trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates, if practical.						
	•	Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the Contractor prior to the commencement of construction.						
	•	All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.						
	•	Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.						
	•	If surface excavation works cannot be avoided during the wet season (April to September), temporarily exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Interception channels should be provided (e.g. along the crest/edge of the excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC Note PN 1/94.						

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		the erosive potential of surface water flows.					

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.

- Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.
- Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.
- Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.
- Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.

5.6.1.1	4.1	Good site practices for works within water gathering grounds	To minimize water	Contractor	Construction	Construction	ProPECC Note PN
		The following conditions should be complied, if there is any works to be	quality impacts to		Works Sites	Phase	1/94
		carried out within the water gathering grounds:	the water gathering		within the water		
			grounds		gathering		

255228/ENL/ENL/61/C December 2010

nvironment	tal Monito	pring and Audit Manual					
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
	•	Adequate measures should be implemented to ensure no pollution or siltation occurs to the catchwaters and catchments.			grounds		
	•	No earth, building materials, oil or fuel, soil, toxic materials or any materials that may possibly cause contamination to water gathering grounds are allowed to be stockpiled on site.					
	•	All surplus spoil should be removed from water gathering grounds as soon as possible.					
	•	Temporary drains with silt traps should be constructed at the site boundary before the commencement of any earthworks.					
	•	Regular cleaning of silt traps should be carried out to ensure proper operation at all time.					
	•	All excavated or filled surfaces which have the risk of erosion should always be protected form erosion.					
	•	Facilities for washing the wheels of vehicles before leaving the site should be provided.					
	•	Any construction plant which causes pollution to catchwaters or catchments due to the leakage of oil or fuel should be removed off site immediately.					
	•	No maintenance activities which may generate chemical wastes should be undertaken in the water gathering grounds. Vehicle maintenance should be confined to designated paved areas only and any spillages should be cleared up immediately using absorbents and waste oils should be collected in designated tanks prior to disposal off site. All storm water run-off from these areas should be discharged via oil/petrol separators and sand/silt removal traps.					
	•	Any soil contaminated with fuel leaked from plant should be removed off site and the voids arising from removal of contaminated soil should be replaced by suitable material approved by the Director of Water Supplies.					
	•	Provision of temporary toilet facilities and use of chemicals or insecticide of any kind are subject to the approval of the Director of Water Supplies.					

Drainage plans should be submitted for approval by the Director of

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	non		& Main Concerns to address	measure?	mououro	measure?	achieve?
		Water Supplies.					
		 An unimpeded access through the waterworks access road should always be maintained. 					
		 Earthworks near catchwaters or streamcourses should only be carried out in dry season between October and March, 					
		 Advance notice must be given before the commencement of works on site quoting WSD's approval letter reference. 					
5.6.1.2	4.1	Good site practices of general construction activities	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Construction solid waste, debris and refuse generated on-site should debris be collected, handled and disposed of properly to avoid entering any nearby stormwater drain. Stockpiles of cement and other construction materials should be kept covered when not being used.			works sites	phase	
		Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby stormwater drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.					
5.6.1.3	4.1	Sewage effluent from construction workforce	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	quality impacts		works sites with on-site sanitary facilities	phase	and Water Pollution Control Ordinance (WPCO)
5.6.1.4	4.1	Hydrogeological Impact	To minimize water	Contractor	Construction	Construction	EIA Recommendation
			quality impacts		works sites of the drill and blast tunnel	phase	and WPCO
Water Qu	ality Impa	ct (Operation)					
		No mitigation measure is required.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
Sewage	and Sewera	age Treatment Impact (Construction)					
6.7	5	The sewage generated by the on-site workforce should be collected in chemical toilets and disposed of off-site by a licensed waste collector.	To minimize water quality impacts	Contractor	All construction works sites with on-site sanitary facilities	Construction phase	EIA recommendation and WPCO
Sewage a	and Sewera	age Treatment Impact (Operation)					
6.6.3	5	Sewage generated by the BCP and Chuk Yuen Village Resite will be collected and treated by the proposed on-site sewage treatment facility using Membrane Bioreactor treatment with a portion of the treated wastewater reused for irrigation and flushing within the BCP.	To minimize water quality impacts	DSD	BCP	Operation phase	EIA recommendation and WPCO
6.5.3	5	Sewage generated from the Administration Building will be discharged to the existing local sewerage system.	To minimize water quality impacts	DSD	Administration Building	Operation phase	EIA recommendation and WPCO
Waste M	anagement	Implication (Construction)					
7.6.1.1	6	Good Site Practices Adverse impacts related to waste management such as potential hazard, air, odour, noise, wastewater discharge and public transport as mentioned in section 3.4.7.2 (ii)(c) of the Study Brief are not expected to arise, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities include:	To minimize adverse environmental impact	Contractor	Construction works sites (general)	Construction Phase	EIA recommendation Waste Disposal Ordinance; Waste Disposal (Chemical Wastes) (General) Regulation; and ETWB TC(W) No.
		 Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site 					19/2005, Environmental Management on Construction Site
		 Training of site personnel in proper waste management and chemical handling procedures 					
		 Provision of sufficient waste disposal points and regular collection of waste 					
		 Dust suppression measures as required under the Air Pollution Control (Construction Dust) Regulation should be followed as far as practicable. Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by covering trucks or in enclosed containers 					
		 General refuse shall be removed away immediately for disposal. As 					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the measure?	What requirements or standards for the measure to achieve?
			& Main Concerns to address	the measure?	measure		
		such odour is not anticipated to be an issue to distant sensitive receivers					
		 Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction from public road 					
		 Covers and water spraying system should be provided for the stockpiled C&D material to prevent dust impact or being washed away 					
		 Designate different locations for storage of C&D material to enhance reuse 					
		Well planned programme for transportation of C&D material to lessen the off-site traffic impact. Well planned delivery programme for offsite disposal and imported filling material such that adverse noise impact from transporting of C&D material is not anticipated					
		 Site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be adopted as far as practicable, such as cleaning and maintenance of drainage systems regularly 					
		 Provision of cover for the stockpile material, sand bag or earth bund as barrier to prevent material from washing away and entering the drains 					
.6.1.2	-	Waste Reduction Measures	To reduce the quantity of wastes	Contractor	Construction works sites (General)	Construction Phase	EIA recommendation and Waste Disposal Ordinance
		Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:					
		 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 					
		Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force					
		 Proper storage and site practices to minimise the potential for damage or contamination of construction materials 					
		Plan and stock construction materials carefully to minimise amount					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		of waste generated and avoid unnecessary generation of waste	to address				
		 In addition to the above measures, specific mitigation measures are recommended below for the identified waste arising to minimise environmental impacts during handling, transportation and disposal of these wastes. 					
7.6.1.3	6	C&D Materials In order to minimise impacts resulting from collection and transportation of C&D material for off-site disposal, the excavated materials should be reused on-site as backfilling material as far as practicable. The surplus rock and other inert C&D material would be disposed of at the Government's Public Fill Reception Facilities (PFRFs) at Tuen Mun Area 38 for beneficial use by other projects in the HKSAR as the last resort. C&D waste generated from general site clearance and tree felling works would require disposal to the designated landfill site. Other mitigation requirements are listed below:	To minimize impacts resulting from C&D material	Contractor	Construction Works Sites (General)	Construction Phase	EIA recommendation; Waste Disposal Ordinance; and ETWB TCW No. 31/2004
		 A Waste Management Plan should be prepared and implemented in accordance with ETWB TC(W) No. 19/2005 Environmental Management on Construction Site; and In order to monitor the disposal of C&D material and solid wastes at public filling facilities and landfills, and to control fly-tipping, a trip-ticket system (e.g. ETWB TCW No. 31/2004) should be included. 					
7.6.1.4	6	General refuse To minimize Contractor Construction Co		Construction phase	Waste Disposal Ordinance and Public Health and Municipal Services Ordinance - Public Cleansing and Prevention of Nuisances Regulation		
7.6.1.5	6	Chemical waste If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the <i>Code of Practice on the</i> <i>Packaging, Labelling and Storage of Chemical Wastes.</i> Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical	To minimize impacts resulting from collection and transportation of chemical waste for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal (Chemical Waste) (General) Regulation and Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

Appendix N

Investigation Report for Exceedance

То	Mr. Vincent Chan	Fax No	By e-n	nail		
Company	CRBC-CEC-Kaden JV					
сс						
From	Nicola Hon	Date	21 June	2018		
Our Ref	TCS00694/13/300/ F1615a	No of Pages	7	(Incl. cover sheet)		
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 6, 7, 8, 9 and 11 June 2018					

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1593 dated 6 June 2018 TCS00694/13/300/F1596 dated 7 June 2018 TCS00694/13/300/F1601 dated 11 June 2018 TCS00694/13/300/F1605 dated 13 June 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Ms. Clara U (EPD) Mr. Simon Leung (ER of C6/ AECOM) Mr. Antony Wong (IEC, SMEC) Fax: 2685 1133 Fax: 2251 0698 By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project				CE 45/2008				
Date		6 Jun 2018	7 Jun 2018	8 Jun 2018	9 Jun 2018	11 Jun 2018		
Location		WM2A(a)						
Time		11:00	10:40	10:20	10:35	10:50		
Parameter			Turbidity (NT	ΓU) / Suspended	solids (mg/L)			
Action Leve	el				tation of the same station of the same			
Limit Leve	l				tation of the same station of the same			
Measured	WM2A-C	243.0 / 126.5	27.8 / 27.0	263.5 / 70.0	5.1 / 2.0	6.0 / 3.0		
Levels	WM2A(a)	967.5 / 444.5	345.5 / 266.0	>999 / 785.0	183.0 / 80.0	64.1 / 54.5		
Exceedance	9	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level		
Investigation Results, Recommendations & Mitigation Measures		 Contract 6 2018 at 1 constructio <i>Figure 1</i>. 2. According sampling o river cours WM2A(a). control sta station. (<i>Ph</i>) 3. According rainstorm Rainstorm Rainstorm Rainstorm quality thro sediment a outside the muddy wa Nylon Dan 11 June 20 generated (<i>Photos 11</i>) 4. Weekly joi conducted 	(CCKJV), cons Bridge D (up n. The moniton to the site photon n 6 to 8 June 20 se including con (<i>Photos 1 to 6</i>) tion was clear <i>notos 7 to 10</i>) to the weather was recorded of Warning Signal Warning Signal Warning Signal Dughout the rive and muddy run e construction se ter from upstreen n which located 18, deflate of N by the stirred & 12) nt site inspection on 7 June 2013 nentation of min	struction activiti stream of WN oring locations and cos taken by the D18, muddy wate ontrol station W D 0n 9 and 11 while muddy w er information during 5 to 8 I was in force of al was of al was of al was of al was of al was of al was of al was of al was of al was of al was of al was of al was of	ided from the es carried out on (2A(a)) were n ad work boundary monitoring team er was observed t WM2A-C and in June 2018, the w water was observed from the Observ June 2018, in was on 6 and 8 June 2 on 8 June 2018 ghly affected by surrounding envir te 2018, it was form was being t e of the construct observed and muc accumulated at t RE, IEC, CCKJV ite environmental res, the observati	6 to 11 June hainly bridge y are shown in during water hroughout the mpact station ater quality at yed at impact watory, heavy which Amber 2018 and Red 5. The water the stirred up ronment even observed that rapped at the ion site. On Idy water was he river bed.		

(a) Bridge construction work was carried out at Bridge D and there was no discharge due to nature of works.
(b) Wastewater treatment facilites were properly provided for Bridge D (<i>Figure 1</i>)
(c) No muddy discharge and runoff from the construction site was observed. However, muddy water was observed throughout the river course resulted from the impact of heavy rain. (<i>Photo 13</i>)
(d) There was no adverse water quality impact observed during the site inspection and the site condition was general in order after the rainstorm. (<i>Photo 14</i>)
(e) As water quality mitigation measures, open slopes were covered with tarpaulin sheet or hard paved as far as practicable to minimize muddy runoff. (<i>Photos 15 and 16</i>)
5. In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection and the site condition was general in order after the rainstorm. Since muddy water was observed from upstream during rainstorm and got trapped at Nylon Dam in the following days, it is considered that the exceedances on 6 to 8 June 2018 were due to rainstorm while on 9 and 11 June 2018 were related to the residual impact of rainstorm.
6. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There were exceedances recorded on 12 and 13 June 2018 and another investigation will be conducted. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon			
Designation :	Environmental Consultant			
Signature :	Auch			
Date :	21 June 2018			

Photo Record

Photo 1

On 6 June 2018, muddy water was observed at WM2A(a).

On 6 June 2018, muddy water was observed at WM2A-C.

Photo 3

On 7 June 2018, muddy water was observed at WM2A(a).

Photo 5 On 8 June 2018, muddy water was observed at WM2A(a). Photo 4

On 7 June 2018, muddy water was observed at WM2A-C.

Photo 6 On 8 June 2018, muddy water was observed at WM2A-C.

Photo 7

On 9 June 2018, muddy water was observed at WM2A(a).

Photo 8

On 9 June 2018, the water quality observed at WM2A-C was clear.

Photo 9

On 11 June 2018, muddy water was observed at WM2A(a).

Photo 11

On 9 June 2018, it was observed that muddy water from upstream after rainstorm was being trapped at the Nylon Dam which located at intermediate of the construction site.

Photo 10 On 11 June 2018, the water quality observed at WM2A-C was clear.

Photo 12

On 11 June 2018, deflate of Nylon Dam was observed and muddy water was generated by the stirred up sediment accumulated at the river bed.

During site inspection on 7 June 2018, no muddy discharge and runoff from the construction site was observed. However, muddy water was observed throughout the river course resulted from the impact of heavy rain.

Photo 14

During site inspection on 7 June 2018, there was no adverse water quality impact observed during the site inspection and the site condition was general in order after the rainstorm.

Photo 15

As water quality mitigation measures, open slopes were covered with tarpaulin sheet as far as practicable to minimize muddy runoff.

Photo 16

As water quality mitigation measures, open slopes were hard paved as far as practicable to minimize muddy runoff.

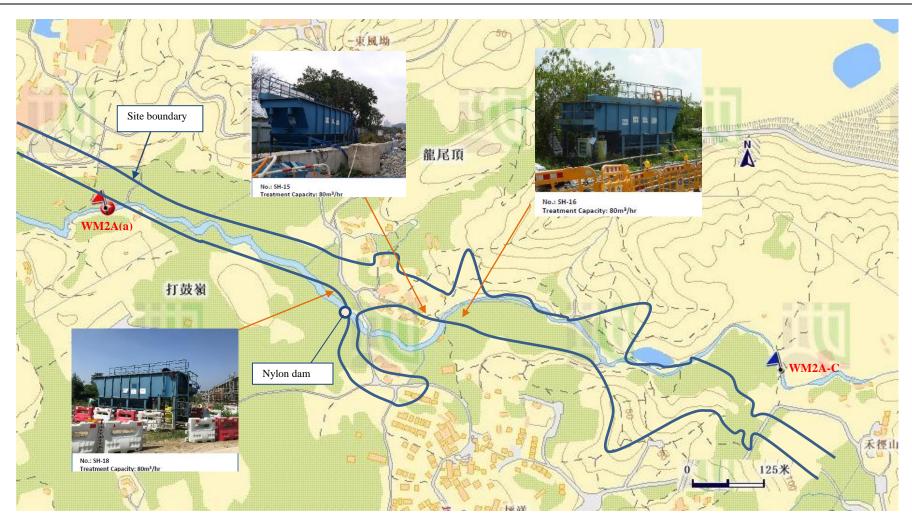


Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

То	Mr. Vincent Chan	Fax No	By e-mail
Company	CRBC-CEC-Kaden JV		
сс			
From	Nicola Hon	Date	26 June 2018
Our Ref	TCS00694/13/300/ F1621	No of Pages	7 (Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of 13, 14 and 15 June 2018	Water Quality	

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1602 dated 13 June 2018 TCS00694/13/300/F1608 dated 15 June 2018 TCS00694/13/300/F1620 dated 21 June 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.	Ms. Clara U (EPD)	Fax:	2685 1133
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project			CE	45/2008		
Date		12 Jun 2018	13 Jun 2018	14 Jun 2018	15 Jun 2018	
Location			WM2A(a)			
Time		11:30	10:20	11:00	10:00	
Parameter		Т	urbidity (NTU) / S	Suspended solids (mg	g/L)	
Action Leve	el			n control station of th m control station of t		
Limit Leve	l			n control station of th m control station of t		
Measured	WM2A-C	4.2 / 2.0	24.8 / 6.5	10.8 / 6.0	14.3 / 2.0	
Levels	WM2A(a)	84.7 / 38.0	242.0 / 150.0	90.5 / 54.0	65.1 / 40.5	
Exceedance	2	Limit Level	Limit Level	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		 According to the site information provided from the Contractor of Contract 6 (CCKJV), construction activities carried out on 12 to 15 June 2018 at Bridge D (upstream of WM2A(a)) were mainly bridge construction. The monitoring locations and work boundary are shown in <i>Figure 1</i>. According to the site photos taken by the monitoring team during water sampling on 12 to 15 June 2018, the water quality at control station was clear while muddy water was observed at impact station. (<i>Photos 1 to 8</i>) According to the weather information from the Observatory, heavy rainstorm was recorded during 12 to 14 June 2018 in which Amber Rainstorm Warning Signal was in force on 13 June 2018. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment even outside the construction site. Moreover, it was observed that muddy water generated under rainstorm was being trapped at the Nylon Dam which located at intermediate of the construction site. Deflation of Nylon Dam was observed during the monitoring and muddy water was generated by the stirred up sediment accumulated at the river bed. 				
		 4. Weekly joint site inspections among the RE, IEC, CCKJV and ET were conducted on 14 June 2018 to audit the site environmental performance and implementation of mitigation measures, the observation during the site inspection is summarized below. (a) Bridge construction work was carried out at Bridge D and there was no discharge due to nature of works. (b) Wastewater treatment facilites were properly provided for Bridge D (<i>Figure 1</i>) 				

	(c) It was observed that water quality at the diversion channel within the construction site was clear. No adverse water quality impact was observed and the site condition was general in order after the rainstorm. (<i>Photo 13</i>)
	(d) As water quality mitigation measures, open slopes were covered with tarpaulin sheet or hard paved as far as practicable to minimize muddy runoff. (<i>Photos 14 & 15</i>)
5.	In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection and the site condition was general in order. It is considered that the exceedances on 12 to 15 June 2018 were due to stirred up sediment during deflation of Nylon Dam and not related to the works under the Project.
6.	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There were exceedances recorded on 16 and 17 June 2018 and another investigation will be conducted. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon			
Designation :	Environmental Consultant			
Signature :	Auch			
Date :	26 June 2018			

Photo Record

On 12 June 2018, muddy water was observed at

On 13 June 2018, muddy water was observed at

Photo 2 On 12 June 2018, the water quality observed at WM2A-C was clear.

Photo 3

WM2A(a).

On 13 June 2018, the water quality observed at WM2A-C was clear.

Photo 5 Photo 6 On 14 June 2018, muddy water was observed at WM2A(a).

On 14 June 2018, the water quality observed at WM2A-C was clear.

On 15 June 2018, muddy water was observed at WM2A(a).

Photo 9

On 12 June 2018, it was observed that muddy water from upstream after rainstorm was being trapped at the Nylon Dam which located at intermediate of the construction site.

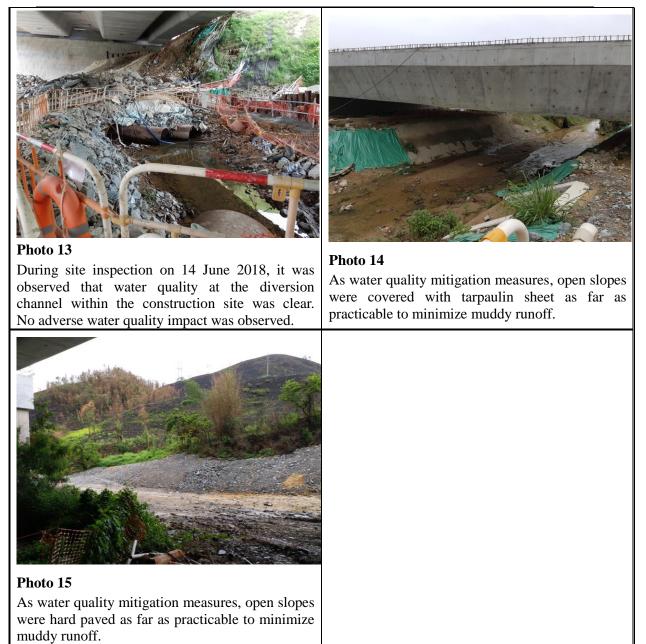
Photo 11

On 14 June 2018, deflation of Nylon Dam was observed during the monitoring and muddy water was generated by the stirred up sediment accumulated at the river bed.

Photo 8

On 15 June 2018, the water quality observed at WM2A-C was clear.

On 13 June 2018, deflation of Nylon Dam was observed during the monitoring and muddy water was generated by the stirred up sediment accumulated at the river bed.



On 15 June 2018, deflation of Nylon Dam was observed during the monitoring and muddy water was generated by the stirred up sediment accumulated at the river bed.

Z:\Jobs\2013\TCS00694\300\IR\F1621.doc Action-United Environmental Services & Consulting

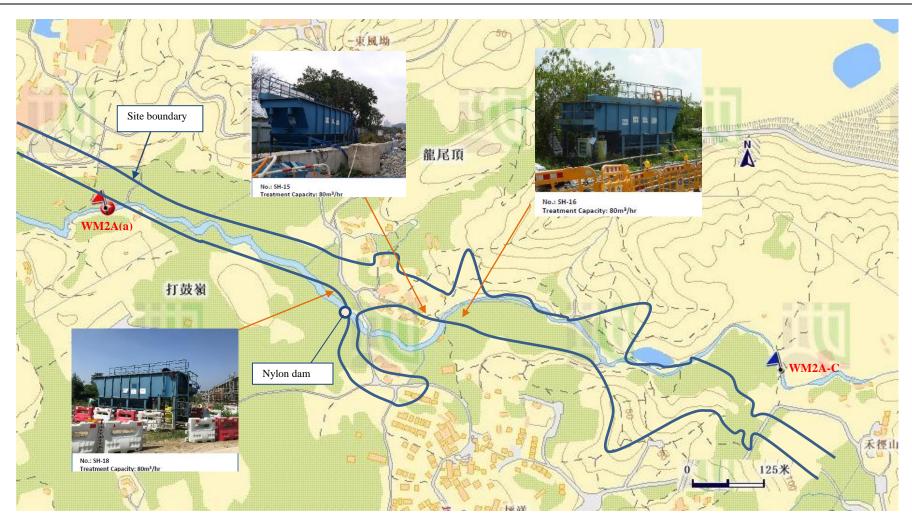


Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

То	Mr. Vincent Chan	Fax No	By e-m	ail			
Company	CRBC-CEC-Kaden JV						
сс							
From	Nicola Hon	Date	29 June	2018			
Our Ref	TCS00694/13/300/ F1622a	No of Pages	7	(Incl. cover sheet)			
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 6, 13, 14 and 15 June 2018 (Contract 6)						

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1594 dated 6 June 2018 TCS00694/13/300/F1603 dated 13 June 2018 TCS00694/13/300/F1609 dated 15 June 2018 TCS00694/13/300/F1618 dated 21 June 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

c.c.

Nicola Hon Environmental Consultant Encl.

Ms. Clara U (EPD)Fax:2685 1133Mr. Simon Leung (ER of C6/ AECOM)Fax:2251 0698Mr. Antony Wong (IEC, SMEC)By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008				
Date			6 June 2018	13 June 2018	14 June 2018	15 June 2018
Location			WM3x			
Time			11:45	11:20	10:10	10:55
Parameter			Turl	bidity (NTU) / Susp	ended Solids (mg/L)	
Action Lev	el		13.4 AND 12 12.6 AND 1	20% of upstream con 20% of upstream co	ntrol station of the sar ontrol station of the sa	me day
Limit Leve	1			1	ntrol station of the sar ntrol station of the sa	2
Measured	WM3-C		70.8 / 57.0	16.1 / 16.0	3.6 / 17.0	7.3 / 6.5
Level	WM3x		624.0 / 472.5	73.6 / 51.0	33.2 / 30.0	24.0 / 22.0
Exceedance	e		Limit Level	Limit Level	Limit Level	Limit Level
Investigation Results, Recommendations & Mitigation Measures		1.	(CCKJV), the co (upstream of WM3 Sha Tau Kok Inter	onstruction activitie 3x) on 6, 13, 14 and	provided by the C es carried out at S 15 June 2018 include version. The monitor	outh Portal Site ed construction of
		2. According to the site photo taken on 6 June 2018, muddy water was observed throughout the Ng Tung River as well as WM3 and WM3-C under heavy rainstorm. On 13 to 15 June 2018, the water quality at WM3-C was appeared clear while turbid water was observed at WM3. It was noted that the channel of WM3x also received the storm water from Sha Tau Kok Road and the adjacent villages. (<i>Photos 1 to 8 and Figure 1</i>)				
		3.	was recorded on 6 were in force in b was highly affected surrounding envir 2018, muddy wate upstream of the p reported by the Co	and 13 June 2018 oth days. The wat d by the stirred up onment even outsider was observed thr project due to heav ontractor of Contrac a villager's backfill	from the Observatory and Amber Rainstorr ter quality throughou sediment and muddy de the construction oughout the Ng Tung y rainstorm. (<i>Photo</i> t 2, large amount of ed site situated at upp	n Warning Signal t the river course y runoff from the site. On 6 June g River including 9) Moreover, as silts were washed
		4.	on 7 and 14 June findings of the insp (a) Wastewater tro	2018 to audit the spection are summari	t South Portal were	erformance. The
			the risk of site	runoff flowing into	the exiting stream. (<i>F</i> - channel was covered	Photo 13)
					nuddy runoff flowing	

	(Photo 16)
	(d) The construction site was general in order and no adverse water quality impact was observed.
	5. In our investigation, the Contractor had implemented water quality mitigation measures and no adverse water quality impact was observed during site inspection. Since inflow of muddy water was observed from upstream of construction site and the channel of WM3x also received the storm water from Sha Tau Kok Road and the adjacent villages during rainy days, it is considered that the exceedances were likely related to the rainstorm and not caused by the works under Contract 6.
	6. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 16 and 19 June 2018. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon			
Designation :	Environmental Consultant			
Signature :	Anh			
Date :	29 June 2018			

Photo Record

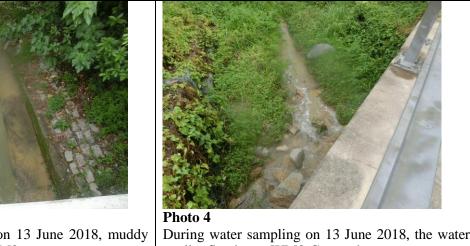


Photo 1

During water sampling on 6 June 2018, muddy water was observed at WM3x.

During water sampling on 6 June 2018, muddy water was observed at WM3x.

Photo 3

During water sampling on 13 June 2018, muddy water was observed at WM3x.

Photo 5 During water sampling on 14 June 2018, the water quality observed at WM3x was slightly turbid.

During water sampling on 13 June 2018, the water quality flowing at WM3-C was clear.

Photo 6

During water sampling on 14 June 2018, the water quality flowing at WM3-C was clear.

During water sampling on 15 June 2018, the water quality observed at WM3x was slightly turbid.

Photo 9

Muddy water was observed throughout the Ng Tung River on 6 June 2018 due to heavy rainstorm.

Photo 11

Large amount of silts were washed downstream from the bare ground of the villager's backfilled site after the downpour.

Photo 8

During water sampling on 15 June 2018, the water quality flowing at WM3-C was clear.

Photo 10

As reported by the Contractor of Contract 2 on 6 June 2018, large amount of silts were washed downstream from a villager's backfilled site situated at upper section of Loi Tung Stream.

Photo 12

Joint site inspection was conducted on 7 June 2018. It was observed that wastewater treatment facilities at South Portal were function properly and the effluent was clear.

The site area adjacent to the stream was completely sealed to minimize the risk of site runoff flowing into the exiting stream.

Photo 15

Joint site inspection was conducted on 14 June 2018. It was observed that wastewater treatment facilities at South Portal were function properly and the effluent was clear.

Photo 14

Joint site inspection was conducted on 14 June 2018. It was observed that wastewater treatment facilities at South Portal were function properly and the effluent was clear.

Photo 16

The expose slope next to the river channel was covered with impervious sheet to minimize generation of muddy runoff flowing into the channel.

Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 32	299			
Company	Dragages Hong Kong Limited						
сс							
From	Nicola Hon	Date	27 June	2018			
Our Ref	TCS00697/13/300/ F1623	No of Pages	7	(Incl. cover sheet)			
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 6, 13, 14 and 15 June 2018 (Contract 2)						

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1595 dated 6 June 2018 TCS00694/13/300/F1604 dated 13 June 2018 TCS00694/13/300/F1610 dated 15 June 2018 TCS00694/13/300/F1619 dated 21 June 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.

Ms. Clara U (EPD)Fax:2685 1133Mr. Edwin Ching (CRE, AECOM)Fax:2171 3498Mr. Antony Wong (IEC, SMEC)By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project				CE 45/20	08	
Date			6 June 2018	13 June 2018	14 June 2018	15 June 2018
Location				WM3x		
Time			11:45	11:20	10:10	9:44
Parameter				idity (NTU) / Suspen		
Action Level					rol station of the same	
					rol station of the sam	
Limit Level			14.0 AND 130% of upstream control station of the same day / 12.9 AND 130% of upstream control station of the same day			
	WM3-C		70.8 / 57.0	16.1 / 16.0	3.6 / 17.0	7.3 / 6.5
	WM3x		624.0 / 472.5	73.6 / 51.0	33.2 / 30.0	24.0 / 22.0
Exceedance			Limit Level	Limit Level	Limit Level	Limit Level
Investigation Results, Recommenda & Mit Measures		t] t]	the construction acti- Portal Site included temporary utility bri- construction of perm	vities carried out on d tunnel internal w idge, permanent dra nanent drainage and relevant works area	ed from the Contract 6, 13, 14 and 15 Jun york and construction inage and ventilation fitting out were con a under C2 and the ventilation	ne 2018 at North on of slip road, n building while ducted at Admin
		2. According to the site photo taken on 6 June 2018, muddy water was observed throughout the Ng Tung River as well as WM3 and WM3-C under heavy rainstorm. On 13 to 15 June 2018, the water quality at WM3-C was appeared clear while turbid water was observed at WM3. It was noted that the channel of WM3x also received the storm water from Sha Tau Kok Road and the adjacent villages. (<i>Photos 1 to 8 and Figure 1</i>)				
			was recorded on 6 a were in force in both highly affected by surrounding environ muddy water was ob of the project due to DHK, large amoun	and 13 June 2018 ar days. The water q the stirred up sed ment even outside th pserved throughout th p heavy rainstorm. (t of silts were wa	om the Observatory, nd Amber Rainstorm uality throughout the iment and muddy e construction site. ne Ng Tung River ind <i>Photo 9)</i> Moreove shed downstream fi Loi Tung Stream. (<i>H</i>	Warning Signal river course was runoff from the On 6 June 2018, cluding upstream r, as reported by rom a villager's
		J I t t	June 2018. It was properly, and the wa Tung Stream was vis the recent condition	observed wastewatter quality outside the sually clear. (<i>Photos</i> of site area was h n works was limited	, DHK and ET were er treatment facilitie ne discharge point at 12 & 13) At Adm ard paved and waste 1. The water qualit	es were in place downstream Loi in Building Site, ewater generated
		i	wastewater treatmer identified during site water observed due	nt facilities and no e inspection. In vi to rainstorm, it is c	implemented and we adverse water qua ew of the external s considered that the e and not caused by	lity impact was source of muddy xceedances were
		i	increased to daily exceedances were tri	due to the limit laggered in consecutiv	itoring frequency at evel exceedance re ve days. There were and 19 June 2018.	corded until no e no exceedances

	Contractor should continually fully implement the water mitigation measure as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.	
Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	

Anh Signature : 27 June 2018

Date :

Photo Record

Photo 1

During water sampling on 6 June 2018, muddy water was observed at WM3x.

Photo 2

During water sampling on 6 June 2018, muddy water was observed at WM3x.

Photo 3

During water sampling on 13 June 2018, muddy water was observed at WM3x.

Photo 5

During water sampling on 14 June 2018, the water quality observed at WM3x was slightly turbid.

Photo 4

During water sampling on 13 June 2018, the water quality flowing at WM3-C was clear.

Photo 6 During water sampling on 14 June 2018, the water quality flowing at WM3-C was clear.

During water sampling on 15 June 2018, the water quality observed at WM3x was slightly turbid.

Photo 9

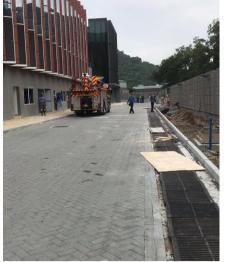
Muddy water was observed throughout the Ng Tung River on 6 June 2018 due to heavy rainstorm.

Photo 8

During water sampling on 15 June 2018, the water quality flowing at WM3-C was clear.

As reported by DHK on 6 June 2018, large amount of silts were washed downstream from a villager's backfilled site situated at upper section of Loi Tung Stream.

Photo 11 Large amount of silts were washed downstream from the bare ground of the villager's backfilled site after the downpour.


Photo 12

During site inspection on 15 June 2018, it was observed wastewater treatment facilities were in place properly.

During site inspection on 15 June 2018, it was observed the water quality outside the discharge point at downstream Loi Tung Stream was visually clear.

Photo 14

At Admin Building Site, the recent condition of site area was hard paved and wastewater generated from the construction works was limited.

Photo 15

At Admin Building Site, the water quality at the adjacent channel was clear on 15 June 2018.

AUES

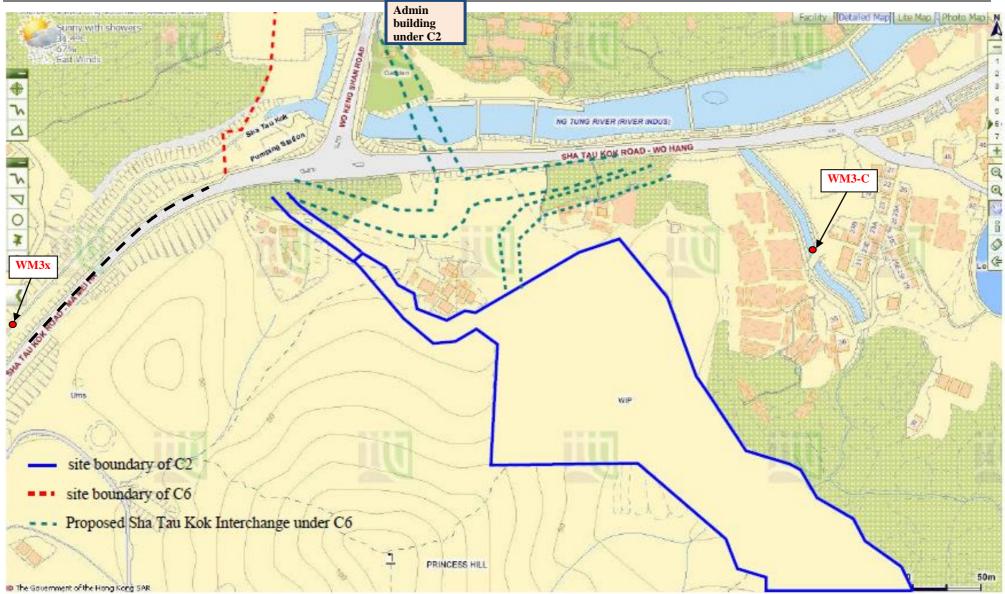


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

То	Mr. Roger Lee	Fax No	by e-m	ail
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	29 June	2018
Our Ref	TCS00670/13/300/ F1639a	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of V June 2018 (Contract 2)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1630 dated 22 June 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Ms. Clara U (EPD)	Fax:	2685 1133
	Mr. Edwin Ching (RE, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2	2008		
Date		21 Jun 2018	22 Jun 2018		
Location		WM			
Time		12:25	11:15		
Parameter		Turbidity	(NTU)		
Action Level		•	35.2 AND 120% of upstream control station of the same day		
Limit Level		38.4 AND 130% of upstream control station of the same day			
Maggurad	WM4-CA	6.6	3.8		
Measured Level	WM4-CB	9.9 6.1			
Level	WM4	48.2	58.0		
Exceedance		Limit Level	Limit Level		
Investigation Results, Recommendations & Mitigation Measures		Contract 2 (DHK), construction Portal Site (SP) on 21 and 22 Ju work, construction of retaining ventilation building external wal	on provided by the Contractor of n activities carried out at South une 2018 included tunnel internal g wall and backfilling and south ll finishing and E&M installation. site was generally hard paved to		
		2. According to the site photos taken by ET on 21 and 22 June 2018, turbid water was observed at impact station WM4 whereas the water quality at control stations WM4-CA and WM4-CB were clear. (Photos 1 to 6 & Figure 1)			
		3. On 21 and 22 June 2018, the Contractor of Contract 3 reported that there was unknown source of muddy water attributed to site area via an underground pipe from box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3). (Photos 7 & 8 & Figure 1)			
		treatment facilities implement functioned properly and the disc site was mostly hard paved and was erected along the site boun runoff and prevent it from flow	t was observed that wastewater ed in South Portal Site was		
		mitigation measures such as treatment facilities and hard pay general, the condition of the So was in order and no adverse wa	as properly implemented water well maintain the wastewater ved most of the site surface. In outh Portal Site under Contract 2 ter quality impact was identified. eedances were not related to the		
		exceed station shall be increase exceedance recorded until no consecutive days. There we	tion, the monitoring frequency at ed to daily due to the limit level exceedances were triggered in re no exceedances triggered at However, the Contractor should		

	continue to implement the environmental mitigation measures
	recommended in implementation schedule in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	29 June 2018

Photo Record

Photo 1

During water quality monitoring on 21 June 2018, turbid water was observed at WM4.

Photo 3 During water quality monitoring on 21 June 2018, the water quality at WM4-CB was clear.

Photo 2

During water quality monitoring on 21 June 2018, the water quality at WM4-CA was clear.

Photo 4

During water quality monitoring on 22 June 2018, turbid water was observed at WM4.

Photo 5 During water quality monitoring on 22 June 2018, the water quality at WM4-CA was clear.

Photo 6 During water quality monitoring on 22 June 2018, the water quality at WM4-CB was clear.

On 21 June 2018, the Contractor of Contract 3 reported that there was unknown source of muddy water attributed to site area via an underground pipe from box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

On 22 June 2018, the Contractor of Contract 3 reported that there was unknown source of muddy water attributed to site area via an underground pipe from box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 9

During site inspection on 22 June 2018, it was observed that wastewater treatment facilities implemented in South Portal Site was functioned properly and the discharge was clear.

The site was mostly hard paved and site hoarding with sealed foots was erected along the site boundary to minimize muddy surface runoff and prevent it from flowing outside the site.

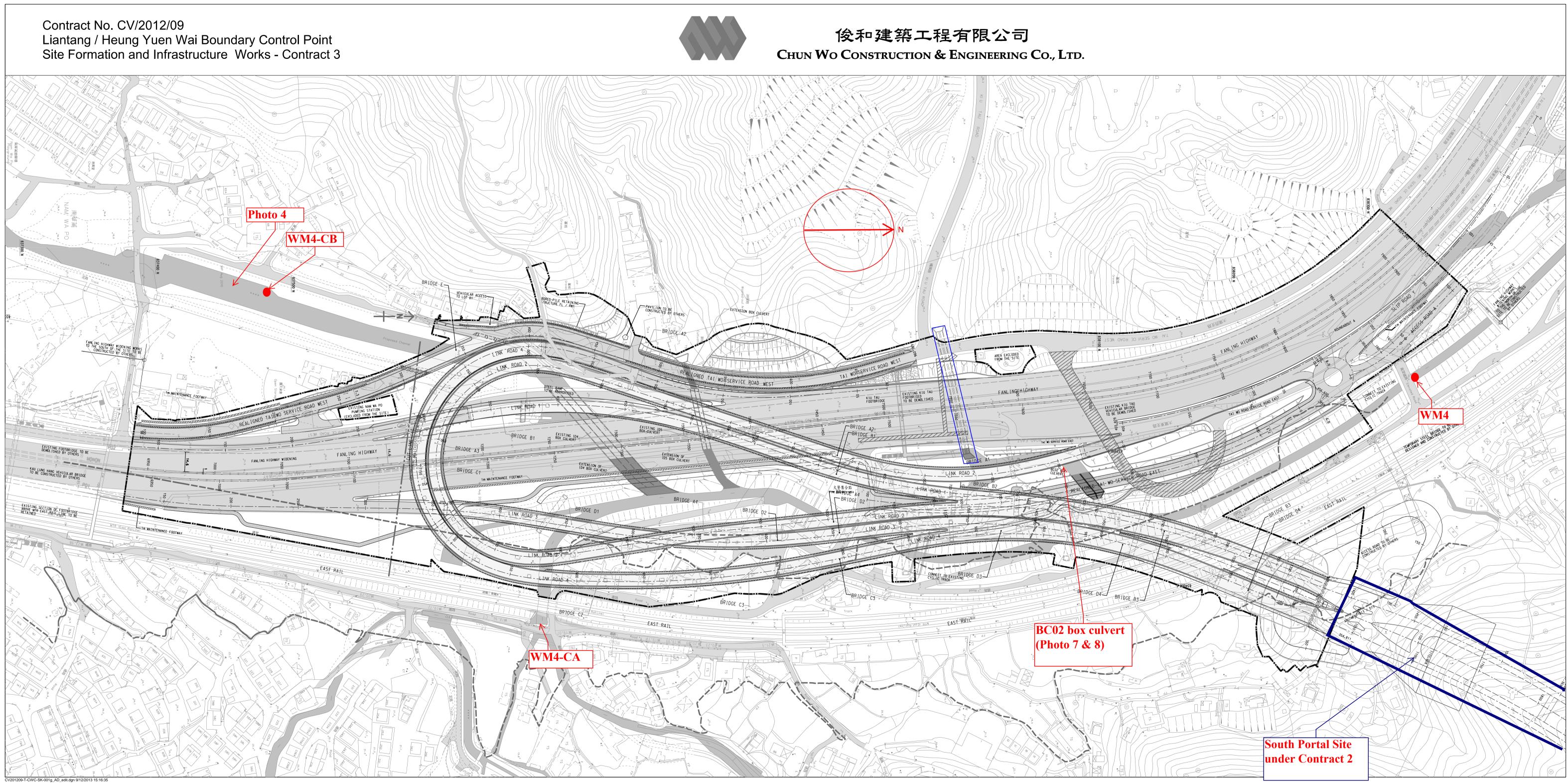


Figure 1. Location of Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Daniel Ho	Fax No	2638 7	077
Company	Chun Wo Construction Ltd			
сс				
From	Nicola Hon	Date	28 June	2018
Our Ref	TCS00670/13/300/ F1640	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary C Investigation Report of Exceedance of W June 2018 (Contract 3)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1629 dated 22 June 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Ms. Clara U (EPD)	Fax:	2685 1133
	Mr. Alan Lee (ER of C3, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 4:	5/2008	
Date		21 Jun 2018	22 Jun 2018	
Location		W	M4	
Time		12:25	11:15	
Parameter		Turbidity (NTU)		
Action Level		35.2 AND 120% of upstream control station of the same day		
Limit Level		38.4 AND 130% of upstream	control station of the same day	
Maagurad	WM4-CA	6.6	3.8	
Measured Level	WM4-CB	9.9	6.1	
	WM4	48.2	58.0	
Exceedance		Limit Level	Limit Level	
Investigation Recommenda Mitigation M	ations &	C3 (Chun Wo), the constructi 22 June 2018 were general construction of Retaining Wa	tion provided by the Contractor of on activities carried out on 21 and site works such as excavation, all and road works. Water quality emented to minimize the impact by	
		turbid water was observed at water quality at control static clear. (Photos 1 to 6 & Figu that the water flowing from ID	2. According to the site photos taken by ET on 21 and 22 June 2018, turbid water was observed at impact station WM4 whereas the water quality at control stations WM4-CA and WM4-CB were clear. (Photos 1 to 6 & Figure 1) Moreover, it was observed that the water flowing from ID4 and ID5 (at intermediate of site) were appeared clear. (Photos 7 & 8 & Figure 1)	
		unknown source of muddy w	Chun Wo reported that there was vater attributed to site area via an ilvert in Kiu Tau Road (outside C3) Photos 9 & 10 & Figure 1)	
			, IEC, Chun Wo and ET was carried investigation. The findings of the ow.	
			flow of muddy water was observed 02 to site area under Contract 3.	
			cilities implemented on-site were o adverse water quality impact was	
			on measures, the exposed surface n sheet as far as practicable to Photo 12)	
		quality mitigation measures. water from outside the site bo	ontractor had implemented water In viewing of inflow of muddy undary was observed on 21 and 22 hat the exceedances were unlikely ntract 3.	
		exceed station shall be increa	Action, the monitoring frequency at used to daily due to the limit level to exceedances were triggered in	

AUES

consecutive days. There were no exceedances triggered at
WM4 on 23 and 25 June 2018. However, the Contractor should
continue to implement the environmental mitigation measures
recommended in implementation schedule in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Aul
Date :	28 June 2018

Photo Record

Photo 1

During water quality monitoring on 21 June 2018, turbid water was observed at WM4.

Photo 3 During water quality monitoring on 21 June 2018, the water quality at WM4-CB was clear.

Photo 2

During water quality monitoring on 21 June 2018, the water quality at WM4-CA was clear.

Photo 4

During water quality monitoring on 22 June 2018, turbid water was observed at WM4.

Photo 5 During water quality monitoring on 22 June 2018, the water quality at WM4-CA was clear.

Photo 6 During water quality monitoring on 22 June 2018, the water quality at WM4-CB was clear.

AUES

Photo 7

During water quality monitoring on 21 June 2018, it was observed that the water flowing from ID4 and ID5 (at intermediate of site) were appeared clear.

Photo 9

On 21 June 2018, Chun Wo reported that there was unknown source of muddy water attributed to site area via an underground pipe from box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

During water quality monitoring on 22 June 2018, it was observed that the water flowing from ID4 and ID5 (at intermediate of site) were appeared clear.

Photo 10

On 22 June 2018, Chun Wo reported that there was unknown source of muddy water attributed to site area via an underground pipe from box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 11

During site inspection on 20 June, it was observed that the inflow of muddy water was observed through Box Culvert BC02 to site area under Contract 3.

As water quality mitigation measures, the exposed surface was covered by tarpaulin sheet as far as practicable to minimize muddy runoff.

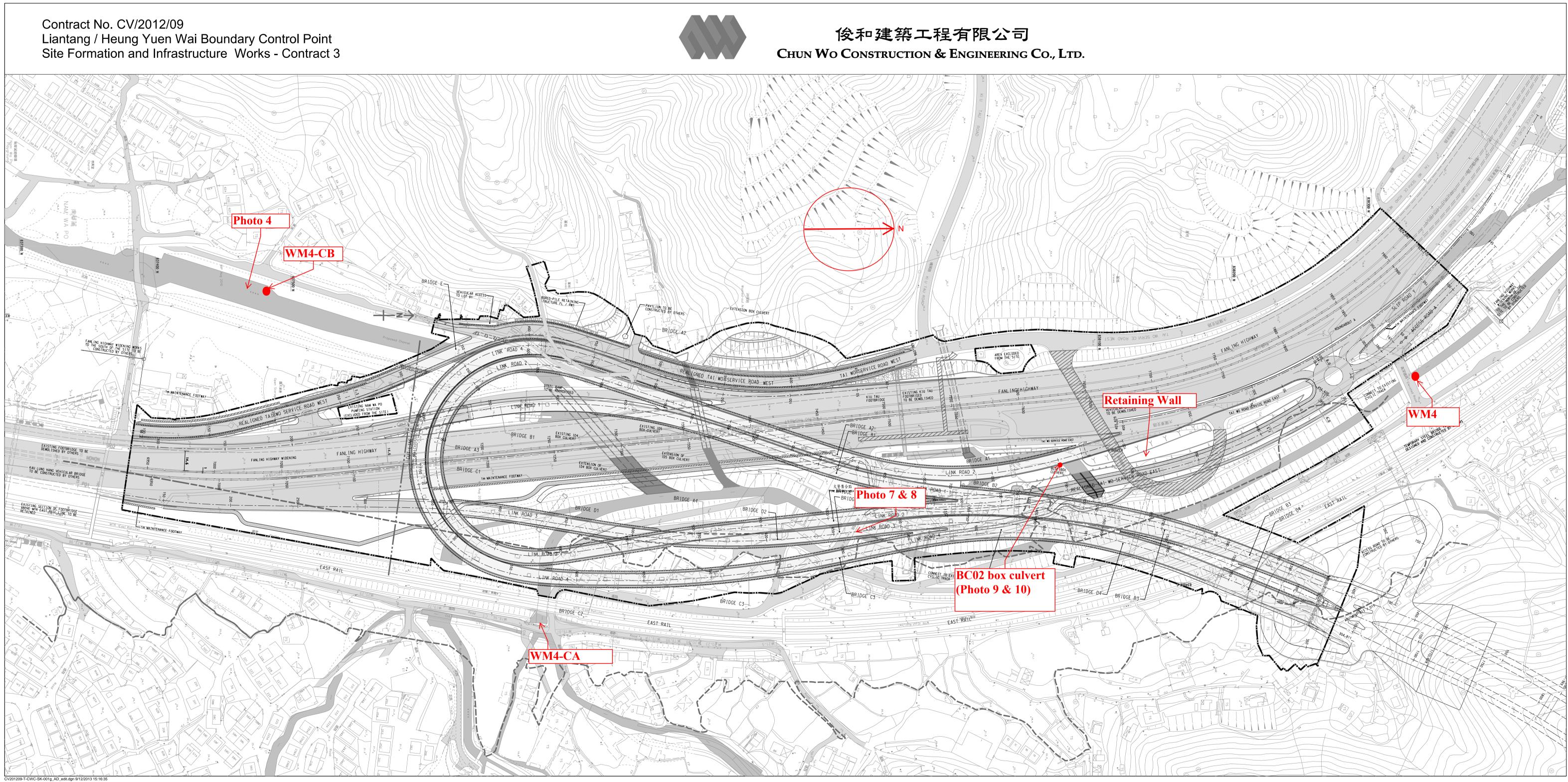


Figure 1. Location of Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-n	nail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	11 July	2018
Our Ref	TCS00694/13/300/ F1638a	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of and 19 June 2018			
IC 1	usseine all massa on the main is illesible mlagas.	antant the aniainat	an an (052)	2050 6050 (

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1617 dated 21 June 2018 TCS00694/13/300/F1635 dated 25 June 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Ms. Clara U (EPD)	Fax:	2685 1133
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project			CE 45/2008	
Date		19 June 2018	16 June 2018	19 June 2018
Location		WM2A(a)		
Time		10:35	10:05	10:35
Parameter		Turbidity (NTU)	Suspended s	solids (mg/L)
Action Level		24.9 AND 120% of upstream control station of the same day		
Limit Level		33.8 AND 130% of upstream control station of the same day		
Measured	WM2A-C	11.3	2.0	2.0
Levels	WM2A(a)	265.5	15.0	136.0
Exceedance		Limit Level	Action Level	Limit Level
Investigatio Recommen Mitigation		 According to the site info Contract 6 (CCKJV), constru 2018 at Bridge D (upstr construction. The monitorin <i>Figure 1</i>. According to the site photos sampling on 16 June 2018, t while at impact station was water was observed at WM2. WM2A-C appeared clear. (<i>Pi</i> As reported by CCKJV on observed at WM2A-C from morning time before the wate no rainfall recorded on 16 June conducted on 19 June 2018. Weekly joint site inspections conducted on 14 June 2018 and implementation of mitig site inspection is summarized (a) Bridge construction work no discharge due to natur (b) Wastewater treatment fa (<i>Figure 1</i>) (c) It was observed that wate construction site was choserved and the site rainstorm. (<i>Photo 6</i>) 	brmation provided from action activities carried of ream of WM2A(a)) with ing locations and work be at taken by the monitoring the water quality at con- slightly turbid. On 19 A(a) while the water qua- hotos 1 to 4) 19 June 2018, inflow of in upstream of the con- er monitoring. (<i>Photo 5</i>) une 2018 while trace ar a samong the RE, IEC, O to audit the site environ- gation measures, the ob- l below. k was carried out at Bri- re of works. cilites were properly pr- er quality at the diversion ear. No adverse water	n the Contractor of out on 16 and 19 June were mainly bridge oundary are shown in ng team during water trol station was clear 9 June 2018, muddy ality at control station of muddy water was istruction site in the) Besides, there was nount of rainfall was CCKJV and ET were nmental performance oservation during the idge D and there was covided for Bridge D on channel within the r quality impact was
		observed and the site	condition was general	l in order after the

	tarpaulin sheet or hard paved as far as practicable to minimize muddy runoff. (<i>Photos 7 and 8</i>)
5.	In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection and the site condition was general in order. It is considered that the exceedance on 16 June 2018 was unlikely due to the contract work while the exceedances on 19 June 2018 were likely related to the external source of muddy water from upstream of the Project and not caused by the works under the Project.
6	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There were no exceedances recorded on 20 and 21 June 2018. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	11 July 2018

Photo Record

Photo 1

On 16 June 2018, the water quality observed at WM2A(a) was slightly turbid.

Photo 2

On 16 June 2018, the water quality observed at WM2A-C was clear.

Photo 3

On 19 June 2018, muddy water was observed at WM2A(a).

Photo 5

In the morning on 19 June 2018, inflow of muddy water was observed at WM2A-C from upstream of the construction site before the water monitoring.

On 19 June 2018, the water quality observed at WM2A-C was clear.

Photo 6

During site inspection on 14 June 2018, it was observed that water quality at the diversion channel within the construction site was clear. No adverse water quality impact was observed

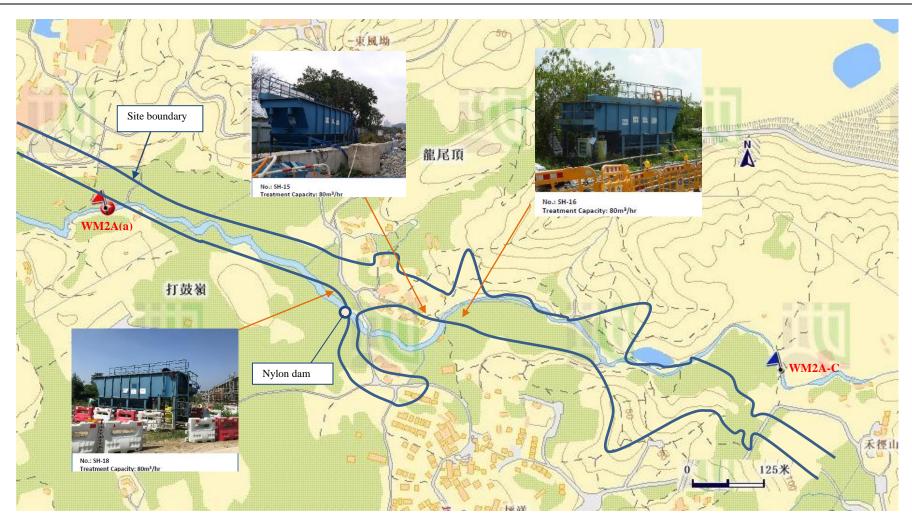


Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

Appendix O

Investigation Report for Complaint

(not used)