

JOB NO.: TCS00694/13

AGREEMENT NO. CE 45/2008 (CE) LIANTANG/HEUNG YUEN WAI BOUNDARY CONTROL POINT AND ASSOCIATED WORKS

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (No.34) – MAY 2016

PREPARED FOR
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT
(CEDD)

Date Reference No. Prepared By Certified By

14 June 2016 TCS00694/13/600/R0372v2

Martin Li (Assistant Environmental Consultant)

Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks	
1	10 June 2016	First Submission	
2	14 June 2016	Amended against IEC's comment on 13 June 2016	

Unit A-C, 27/F Ford Glory Plaza
37-39 Wing Hong Street
Cheung Sha Wan, Kowloon, Hong Kong
T +852 3995 8100 F +852 3995 8101 E hongkong@smec.com
www.smec.com

14 June 2016

Our ref: 7076192/L20569/AB/AW/MC/rw

AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T.

By Email & Post

Attention: Mr Simon LEUNG

Dear Sirs

Agreement No. CE 45/2008 (CE)
Liantang/Heung Yuen Wai Boundary Control Point and Associated Works
Independent Environmental Checker – Investigation
Monthly EM&A Report (No. 34) – May 2016

With reference to the Monthly EM&A Report No. 34 for May 2016 (Version 2) certified by the ET Leader, please be noted that we have no adverse comments on the captioned submission. We herewith verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-404/2011/C.

Thank you for your attention and please do not hesitate to contact the undersigned on tel. 3995-8120 or by email to antony.wong@smec.com; or our Mr Man CHEUNG on tel. 3995 8132 or by email to man.cheung@smec.com.

Yours faithfully for and on behalf of SMEC Asia Limited

Antony WONG

Independent Environmental Checker

CEDD/BCP by fax: 3547 1659 Mr Desmond LAM CC ArchSD Mr William WL CHENG by fax: 2804 6805 AECOM Mr Pat LAM / Mr Perry YAM by email Mr Peter YAM / Mr Justin CHEUNG Ronald Lu by email by email SRJV Mr Edwin AU Mr Daniel HO CW by email DHK Mr Edmond WONG by email **CCKJV** Mr Vincent CHAN by email by email **KRSJV** Mr TY LEUNG Leighton Mr Jon KITCHING by email **AUES** Mr TW TAM by email

EXECUTIVE SUMMARY

ES01 This is the **34**th monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from **1 to 31 May 2016** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

- ES02 To facilitate the project management and implementation, Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project is divided to seven CEDD contracts including Contract 2 (CV/2012/08), Contract 3 (CV/2012/09), Contract 4 (TCSS), Contract 5 (CV/2013/03), Contract 6 (CV/2013/08) and Contract 7 (NE/2014/03) and an ArshSD contract (Contract SS C505).
- ES03 In the Reporting Period, the construction works under Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project currently included Contract 2, Contract 3, Contract 5, Contract 6, Contract 7 and Contract SS C505. Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

Environmental	Environmental	Reporting Period		
Aspect	Monitoring Parameters / Inspection	Number of Monitoring Locations to undertake	Total Occasions	
Air Quality	1-hour TSP	9	147	
All Quality	24-hour TSP	9	45	
Construction Noise	$L_{eq(30min)}$ Daytime	10	45	
		WM1 & WM1-C,	13 Scheduled & 2 extra	
	Water in-situ	WM2A & WM2A-C	12 Scheduled & 5 extra	
Water Quality	measurement and/or	WM2B & WM2B-C	13 Scheduled & 0 extra	
	sampling	WM3 &WM3-C	13 Scheduled & 4 extra	
		WM4, WM4-CA &WM4-CB	13 Scheduled & 0 extra	
	IEC, ET, the	Contract 2	4	
	Contractor and RF	Contract 3	5	
Joint Site	joint site	Contract 5	5	
Inspection / Audit	Environmental	Contract 6	4	
Tuuit	Inspection and	Contract 7	5	
	Auditing	Contract SS C505	4	

Note: Extra monitoring day was due to measurement results exceedance

One scheduled day and one extra day were unsuccessful conducted water quality monitoring at WM2A

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES04 In the Reporting Period, no air quality and construction noise exceedance was registered for the Project. For water quality monitoring, a total of twenty-seven (27) Limit Level (LL) exceedances, namely fifteen (15) LL exceedances of turbidity and twelve (12) LL exceedances of Suspended Solids. The summary of exceedance in the Reporting Period is shown below.

Envisorm on tal	Manitanina	A ation	Limit Level	Event & Action		
Environmental Aspect	Parameters Parameters			NOE Issued	Investigation Result	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
All Quality	24-hour TSP	0	0	0		
Construction Noise	L _{eq(30min)} Daytime	0	0	0		
Water Quality	DO	0	0	0		

Environmental	Manitoning	I imit		Event & Action		
Environmental Aspect	Monitoring Parameters			NOE Issued	Investigation Result	Corrective Actions
	Turbidity	0	15		are not due to the project	
	SS	0	12	12	due to the project construction activities	measures in accordance with ISEMM of the EM&A Manual requirements

ENVIRONMENTAL COMPLAINT

ES05 In this Reporting Period, three (3) documented environmental complaints related Contract 2 and/or Contract 6 are received by CEDD or 1823. The complaint received on 26 May 2016 is under investigation while the investigation report of the complaint received on 28 May 2016 and 31 May 2016 are under review.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES06 No environmental summons or successful prosecutions were recorded in the Reporting Period.

REPORTING CHANGE

ES07 The Noise Monitoring Location NM2 was relocated to NM2a in the Reporting Period starting from 9 May 2016. The proposal for Noise Monitoring Location relocation from NM2 to NM2a was submitted to IEC and verified by IEC on 6 May 2016.

SITE INSPECTION

- ES08 In this Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 2* has been carried out by the RE, IEC, ET and the Contractor on **6, 13, 20 and 27 May 2016**. No non-compliance was noted.
- ES09 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 3* has been carried out by the RE, IEC, ET and the Contractor on **5**, **9**, **18**, **23**, **30** May **2016**. No non-compliance was noted.
- ES10 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 5* has been carried out by the RE, IEC, ET and the Contractor on **3, 10, 17, 24, 31 May 2016.** No non-compliance was noted.
- ES11 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 6* has been carried out by the RE, IEC, ET and the Contractor on **5**, **12**, **19**, **26 May 2016**. No non-compliance was noted.
- ES12 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract SS C505* has been carried out by the RE, IEC, ET and the Contractor on **4, 11, 18, 25 May 2016**. No non-compliance was noted.
- ES13 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract* 7 has been carried out by the RE, IEC, ET and the Contractor on 3, 10, 17, 24, 31 May 2016. No non-compliance was noted.

FUTURE KEY ISSUES

- As wet season has come, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River or public area would be the key issue. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River. Moreover, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- ES15 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- ES16 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.

Table of Contents

1	INTROD	UCTION	1
	1.1	PROJECT BACKGROUND	1
	1.2	REPORT STRUCTURE	1
2	PROJEC	T ORGANIZATION AND CONSTRUCTION PROGRESS	3
	2.1	CONSTRUCTION CONTRACT PACKAGING	3
	2.2	PROJECT ORGANIZATION	5
	2.3	CONCURRENT PROJECTS	7
	2.4	CONSTRUCTION PROGRESS	7
	2.5	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	Ģ
3	SUMMA	RY OF IMPACT MONITORING REQUIREMENTS	14
	3.1	GENERAL	14
	3.2	MONITORING PARAMETERS	14
	3.3	MONITORING LOCATIONS	14
	3.4	MONITORING FREQUENCY AND PERIOD	16
	3.5	MONITORING EQUIPMENT	17
	3.6	MONITORING METHODOLOGY	19
	3.7	EQUIPMENT CALIBRATION	21 21
	3.8 3.9	DERIVATION OF ACTION/LIMIT (A/L) LEVELS	22
		DATA MANAGEMENT AND DATA QA/QC CONTROL	
4	-	ALITY MONITORING	23
	4.1	GENERAL	23
	4.2	AIR QUALITY MONITORING RESULTS IN REPORTING MONTH	23
5	CONSTR	RUCTION NOISE MONITORING	26
	5.1	GENERAL	26
	5.2	NOISE MONITORING RESULTS IN REPORTING MONTH	26
6	WATER	QUALITY MONITORING	26
	6.1	GENERAL	27
	6.2	RESULTS OF WATER QUALITY MONITORING	27
7	WASTE	MANAGEMENT	35
•	7.1	GENERAL WASTE MANAGEMENT	35
	7.2	RECORDS OF WASTE QUANTITIES	35
8		SPECTION	36
o	8.1	REQUIREMENTS	36
	8.2	FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	36
9		NMENTAL COMPLAINT AND NON-COMPLIANCE	錯誤! 尚未定義書籤。
	9.1	ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	41
10	IMPLEM	IENTATION STATUS OF MITIGATION MEASURES	47
	10.1	GENERAL REQUIREMENTS	47
	10.2	TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	47
	10.3	KEY ISSUES FOR THE COMING MONTH	49
11	CONCLU	USIONS AND RECOMMENDATIONS	50
	11.1	CONCLUSIONS	50
	11.2	RECOMMENDATIONS	50

LIST OF TABLES

TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	IMPACT MONITORING STATIONS - AIR QUALITY
TABLE 3-3	IMPACT MONITORING STATIONS - CONSTRUCTION NOISE
TABLE 3-4	IMPACT MONITORING STATIONS - WATER QUALITY
TABLE 3-5	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-6	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-7	WATER QUALITY MONITORING EQUIPMENT
TABLE 3-8	ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING
TABLE 3-9	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-10	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM1A
TABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM2
TABLE 4-3	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM3
Table 4-4	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM4B
Table 4-5	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM5A
TABLE 4-6	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM6
Table 4-7	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM7A
TABLE 4-8	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM8
TABLE 4-9	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM9B
Table 5-1	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS (CONTRACT 3 AND 5)
TABLE 5-2	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS (CONTRACT 2 AND 6)
Table 6-1	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 3
Table 6-2	Summary of Water Quality Monitoring Results for Contract 5 and SS C505 $$
TABLE 6-3	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 6
Table 6-4	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 6
Table 6-5	Breaches of Water Quality Monitoring Criteria in Reporting Period
Table 6-6	SUMMARY OF WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
TABLE 6-7	Summary of Water Quality Exceedance which were under review by IEC in April 2016
Table 7-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
Table 7-2	SUMMARY OF QUANTITIES OF C&D WASTES
Table 8-1	SITE OBSERVATIONS FOR CONTRACT 2
TABLE 8-2	SITE OBSERVATIONS FOR CONTRACT 3
TABLE 8-3	SITE OBSERVATIONS FOR CONTRACT 5
Table 8-4	SITE OBSERVATIONS FOR CONTRACT 6
Table 8-5	SITE OBSERVATIONS FOR CONTRACT SS C505
TABLE 8-6	SITE OBSERVATIONS FOR CONTRACT 7
TABLE 9-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 9-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 9-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 10-1	ENVIRONMENTAL MITIGATION MEASURES

LIST OF APPENDICES

APPENDIX A LAYOUT PLAN OF THE PROJECT

APPENDIX B ORGANIZATION CHART

APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
APPENDIX D	DESIGNATED MONITORING LOCATIONS AS RECOMMENDED IN THE APPROVED EM&A MANUAL
APPENDIX E	MONITORING LOCATIONS FOR IMPACT MONITORING
APPENDIX F	CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND HOKLAS- ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
APPENDIX G	EVENT AND ACTION PLAN
APPENDIX H	IMPACT MONITORING SCHEDULE
APPENDIX I	DATABASE OF MONITORING RESULT
APPENDIX J	GRAPHICAL PLOTS FOR MONITORING RESULT
APPENDIX K	METEOROLOGICAL DATA
APPENDIX L	WASTE FLOW TABLE
APPENDIX M	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES
APPENDIX N	INVESTIGATION REPORT FOR EXCEEDANCE

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department is the Project Proponent and the Permit Holder of Agreement No. CE 45/2008 (CE) Liantang / Heung Yuen Wai Boundary Control Point and Associated Works, which is a Designated Project to be implemented under Environmental Permit number EP-404/2011/C granted on 12 March 2015.
- 1.1.2 The Project consists of two main components: Construction of a Boundary Control Point (hereinafter referred as "BCP"); and Construction of a connecting road alignment. Layout plan of the Project is shown in *Appendix A*.
- 1.1.3 The proposed BCP is located at the boundary with Shenzhen near the existing Chuk Yuen Village, comprising a main passenger building with passenger and cargo processing facilities and the associated customs, transport and ancillary facilities. The connecting road alignment consists of six main sections:
 - 1) Lin Ma Hang to Frontier Closed Area (FCA) Boundary this section comprises at-grade and viaducts and includes the improvement works at Lin Ma Hang Road;
 - 2) Ping Yeung to Wo Keng Shan this section stretches from the Frontier Closed Area Boundary to the tunnel portal at Cheung Shan and comprises at-grade and viaducts including an interchange at Ping Yeung;
 - 3) North Tunnel this section comprises the tunnel segment at Cheung Shan and includes a ventilation building at the portals on either end of the tunnel;
 - 4) Sha Tau Kok Road this section stretches from the tunnel portal at Wo Keng Shan to the tunnel portal south of Loi Tung and comprises at-grade and viaducts including an interchange at Sha Tau Kok and an administration building;
 - 5) South Tunnel this section comprises a tunnel segment that stretches from Loi Tung to Fanling and includes a ventilation building at the portals on either end of the tunnel as well as a ventilation building in the middle of the tunnel near Lau Shui Heung;
 - 6) Fanling this section comprises the at-grade, viaducts and interchange connection to the existing Fanling Highway.
- 1.1.4 Action-United Environmental Services & Consulting has been commissioned as an Independent ET to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. As part of the EM&A program, the baseline monitoring has carried out between 13 June 2013 and 12 July 2013 for all parameters including air quality, noise and water quality before construction work commencement. The Baseline Monitoring Report summarized the key findings and the rationale behind determining a set of Action and Limit Levels (A/L Levels) from the baseline data. Also, the Project baseline monitoring report which verified by the IEC has been submitted to EPD on 16 July 2013 for endorsement. The major construction works of the Project was commenced on 16 August 2013 in accordance with the EP Section 5.3 stipulation.
- 1.1.5 This is **34**th monthly EM&A report presenting the monitoring results and inspection findings for reporting period from **1** to **31 May 2016**.

1.2 REPORT STRUCTURE

- 1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-
 - Section 1 Introduction
 - Section 2 Project Organization and Construction Progress
 - **Section 3** Summary of Impact Monitoring Requirements
 - **Section 4** Air Quality Monitoring
 - Section 5 Construction Noise Monitoring
 - Section 6 Water Quality Monitoring

Section 7	Waste Management
Section 8	Site Inspections
Section 9	Environmental Complaints and Non-Compliance
Section 10	Implementation Status of Mitigation Measures
Section 11	Conclusions and Recommendations

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 CONSTRUCTION CONTRACT PACKAGING

- 2.1.1 To facilitate the project management and implementation, the Project would be divided by the following contracts:
 - Contract 2 (CV/2012/08)
 - Contract 3 (CV/2012/09)
 - Contract 4 (NE/2014/02)
 - Contract 5 (CV/2013/03)
 - Contract 6 (CV/2013/08)
 - Contract 7 (NE/2014/03)
 - ArchSD Contract No. SS C505
- 2.1.2 The details of each contracts is summarized below and the delineation of each contracts is shown in *Appendix A*.

Contract 2 (CV/2012/08)

- 2.1.3 Contract 2 has awarded in December 2013 and construction work was commenced on 19 May 2014. Major Scope of Work of the Contract 2 is listed below:
 - construction of an approximately 5.2km long dual two-lane connecting road (with about 0.4km of at-grade road and 4.8km of tunnel) connecting the Fanling Interchange with the proposed Sha Tau Kok Interchange;
 - construction of a ventilation adit tunnel and the mid-ventilation building;
 - construction of the north and south portal buildings of the Lung Shan Tunnel and their associated slope works;
 - provision and installation of ventilation system, E&M works and building services works for Lung Shan tunnel and Cheung Shan tunnel and their portal buildings;
 - construction of Tunnel Administration Building adjacent to Wo Keng Shan Road and the associated E&M and building services works; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 3 (CV/2012/09)

- 2.1.4 Contract 3 was awarded in July 2013 and construction work was commenced on 5 November 2013. Major Scope of Work of the Contract 3 is listed below:
 - construction of four link roads connecting the existing Fanling Highway and the south portal of the Lung Shan Tunnel;
 - realignment of the existing Tai Wo Service Road West and Tai Wo Service Road East;
 - widening of the existing Fanling Highway (HyD's entrustment works);
 - demolishing existing Kiu Tau vehicular bridge and Kiu Tau footbridge and reconstruction of the existing Kiu Tau Footbridge (HyD's entrustment works); and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 4 (NE/2014/02)

- 2.1.5 Contract 4 has awarded in mid-April 2016. However, the major construction work still is not yet commenced. The scope of work of the Contract 4 includes:
 - design, supply, delivery, installation, testing and commissioning of a traffic control and surveillance system for the connecting road linking up the Liantang / Heung Yuen Wai Boundary Control Point and the existing Fanling Highway.

Contract 5 (CV/2013/03)

- 2.1.6 Contract 5 has awarded in April 2013 and construction work was commenced in August 2013. Major Scope of Work of the Contract 5 is listed below:
 - site formation of about 23 hectares of land for the development of the BCP;
 - construction of an approximately 1.6 km long perimeter road at the BCP including a 175m long depressed road;
 - associated diversion/modification works at existing local roads and junctions including Lin Ma Hang Road;
 - construction of pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provision of resite area with supporting infrastructure for reprovisioning of the affected village houses; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 6 (CV/2013/08)

- 2.1.7 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. Major Scope of Work of the Contract 6 would be included below:
 - construction of an approximately 4.6km long dual two-lane connecting road (with about 0.6km of at-grade road, 3.3km of viaduct and 0.7km of tunnel) connecting the BCP with the proposed Sha Tau Kok Road Interchange and the associated ventilation buildings;
 - associated diversion/modification works at access roads to the resite of Chuk Yuen Village;
 - provision of sewage collection, treatment and disposal facilities for the BCP and the resite of Chuk Yuen Village;
 - construction of a pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provisioning of the affected facilities including Wo Keng Shan Road garden; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 7 (NE/2014/03)

- 2.1.8 Contract 7 has awarded in December 2015 and the construction works of Contract 7 was commenced on 15 February 2016. Major Scope of Work of the Contract 7 would be included below:
 - construction of the Hong Kong Special Administrative Region (HKSAR) portion of four vehicular bridge
 - construction of one pedestrian bridge crossing Shenzhen (SZ) River (cross boundary bridges)

ArchSD Contract No. SS C505

- 2.1.9 SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. Major Scope of Work of the SS C505 would be included below:
 - passenger-related facilities including processing kiosks and examination facilities for private cars and coaches, passenger clearance building and halls, the interior fitting works for the pedestrian bridge crossing Shenzhen River, etc.;
 - cargo processing facilities including kiosks for clearance of goods vehicles, customs inspection platforms, X-ray building, etc.;
 - accommodation for the facilities inside of the Government departments providing services in connection with the BCP;
 - transport-related facilities inside the BCP including road networks, public transport interchange, transport drop-off and pick-up areas, vehicle holding areas and associated road furniture etc;
 - a public carpark; and
 - other ancillary facilities such as sewerage and drainage, building services provisions and

electronic systems, associated environmental mitigation measure and landscape works.

2.2 PROJECT ORGANIZATION

2.2.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

Civil Engineering and Development Department (CEDD)

2.2.2 CEDD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by CEDD to audit the results of the EM&A works carried out by the ET.

Architectural Services Department (ArchSD)

2.2.3 ArchSD acts as the works agent for Development Bureau (DEVB), for Contract SS C505 Liantang/Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities.

Environmental Protection Department (EPD)

2.2.4 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

Ronald Lu & Partners (Hong Kong) Ltd (The Architect)

- 2.2.5 Ronald Lu & Partners (Hong Kong) Ltd is appointed by ArchSD as an Architect for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) BCP Buildings and Associated Facilities. It responsible for overseeing the construction works of Contract SS C505 and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Architect with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors' and ET's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulation of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

Engineer or Engineers Representative (ER)

- 2.2.6 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors's, ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulaiton of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

The Contractor(s)

- 2.2.7 There will be one contractor for each individual works contract. Once the contractors are appointed, EPD, ET and IEC will be notified the details of the contractor.
- 2.2.8 The Contractor for Contracts under CEDD should report to the ER. For ArchSD Contract, the Contractor should report to the Architect or Architect's Representative (AR). The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Employ an Environmental Team (ET) to undertake monitoring, laboratory analysis and reporting of EM &A Facilitate ET's monitoring and site inspection activities
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.2.9 Once the ET is appointed, the EPD, CEDD, ER, Architect and IEC will be notified the details of the ET.
- 2.2.10 The ET shall not be in any way an associated body of the Contractor(s), and shall be employed by the Project Proponent/Contractor to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitably qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. The ET shall report to the Project Proponent and the duties shall include:
 - Monitor and audit various environmental parameters as required in this EM&A Manual
 - Analyse the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications
 - Audit environmental conditions on site
 - Report on the environmental monitoring and audit results to EPD, the ER, the Architect, the IEC and Contractor or their delegated representatives
 - Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
 - Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
 - Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with the client departments, Engineer/Engineer's Representative, ET, IEC and the Contractor(s) of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

Independent Environmental Checker (IEC)

- 2.2.11 One IEC will be employed for this Project. Once the IEC is appointed, EPD, ER, the Architect and ET will be notified the details of the IEC.
- 2.2.12 The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 10 years' experience in EM&A and have relevant professional qualifications. The appointment of IEC should be subject to the approval of EPD. The IEC should:
 - Provide proactive advice to the ER and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Verify the log-book(s) mentioned in Condition 2.2 of the EP, notify the Director by fax, within one working day of receipt of notification from the ET Leader of each and every occurrence, change of circumstances or non-compliance with the EIA Report and/or the EP, which might affect the monitoring or control of adverse environmental impacts from the Project
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the ER and Project Proponent on a monthly basis
 - Liaison with the client departments, Engineer/Engineer's Representative, the Architect, ET, IEC and the Contractor of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

2.3 CONCURRENT PROJECTS

- 2.3.1 The concurrent construction works that may be carried out include, but not limited to, the following:
 - (a) Regulation of Shenzhen River Stage IV;
 - (b) Widening of Fanling Highway Tai Hang to Wo Hop Shek Interchange Contract No. HY/2012/06;
 - (c) Construction of BCP facilities in Shenzhen.

2.4 CONSTRUCTION PROGRESS

2.4.1 In the Reporting Period, the major construction activity conducted under the Project is located in Contracts 2, 3, 5, 6, 7 and SS C505 and they are summarized in below. Moreover, 3-month rolling construction program for all the current contracts is enclosed in *Appendix C*.

Contract 2 (CV/2012/08)

2.4.2 The contract commenced in May 2014. In this Reporting Period, construction activities conducted are listed below:

Mid-Vent • Tube excavation (NB + SB)

Portal • Adit invert slab

• Ventilation building superstructure

North Portal

 Slope stabilization and retaining wall
 Northbound top heading excavation and tunnel enlargement

• Tunnel Boring Machine (TBM) excavation

South Portal • Southbound and Northbound Drill and Blast (D&B) excavation

Building works superstructure

Admin Building • Building works foundation

Contract 3 (CV/2012/09)

- 2.4.3 The Contract commenced in November 2013. In this Reporting Period, construction activities conducted are listed below:
 - Cable detection and trial trenches
 - Filling works at Tong Hang East
 - Storm drain laying
 - Noise barrier construction
 - Pier / pier table construction
 - Pile cap works
 - Portal beam construction
 - Pre-drilling Works and Piling Works for Viaduct
 - Pre-drilling Works and Piling Works for Noise Barrier
 - Retaining Wall construction
 - Road works
 - Sewer works
 - Slope works
 - Socket H-pile Installation
 - Steel Posts and Panels Installation of Noise Barrier
 - Tree Felling Works
 - Utilities Duct Laying
 - Viaduct segment erection

Contract 4 (Contract number to be assigned)

2.4.4 The Contract was awarded in mid-April 2016 and the major construction work has not yet commenced.

Contract 5 (CV/2013/03)

- 2.4.5 The Contract awarded in April 2013 and commenced on August 2013. In this Reporting Period, construction activities conducted are listed below:
 - Construction of rising main (VO61) at existing Lin Ma Hang (LMH) Road
 - Bituminous laying at existing LMH road
 - Brick laying at footpath of LMH road
 - Planting at proposed and existing LMH road
 - Installation of Underground Utility (UU) at proposed and existing LMH road
 - Irrigation at proposed LMH Road

Contract 6 (CV/2013/08)

- 2.4.6 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. In this Reporting Period, construction activities conducted are listed below:
 - Slope Works
 - Bored Piling
 - Abutment and Pier Construction
 - Sewage Treatment Plant Construction
 - Road Works
 - Tunnel Works

Contract 7 (NE/2014/03)

2.4.7 Contract 7 has awarded in December 2015 and construction work was commenced on 15 February

2016. In this Reporting Period, construction activities conducted are listed below:

- Ground Investigation Works for Bridge A, C and E
- Piling Works for Bridge B, C, D

Contract SS C505

- 2.4.8 Contract SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. In this Reporting Period, construction activities conducted are listed below:
 - General Site Setup
 - CLP temporally sub-station works
 - Erection of Welfare Shelter
 - Building no. 5, 9 and 36 construction
 - Pile cap construction for Building no. 4, 6 & 7
 - Tower crane TC10 construction
 - H-pile works and load test
 - Disassembly of crawler crane
 - Grouting and full core to completed bored piles
 - Bridge construction works including construction of bridge column, retaining wall, pile cap
 - Underground drainage works
 - Prototype "A" Construction works
 - Prototype "B" footing construction works
 - Formwork and falsework for PTB's slap construction
 - Pile Cap construction for PTB

2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

- 2.5.1 In according to the EP, the required documents have submitted to EPD which listed in below:
 - Project Layout Plans of Contracts 2, 3, 5, 6, 7 and SS C505
 - Landscape Plan
 - Topsoil Management Plan
 - Environmental Monitoring and Audit Programme
 - Baseline Monitoring Report (TCS00690/13/600/R0030v3) for the Project
 - Waste Management Plan of the Contracts 2, 3, 5, 6, 7 and SS C505
 - Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR) for Po Kat Tsai, Loi Tung and the workshops in Fanling
 - Vegetation Survey Report
 - Woodland Compensation Plan
 - Habitat Creation Management Plan
 - Wetland Compensation Plan
- 2.5.2 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project of each contracts are presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits of the Contracts

Thomas	Description	License/Permit Status			
Item		Ref. no.	Effective Date	Expiry Date	
		Contract 2			
1	Air pollution Control (Construction Dust) Regulation	Ref No.: 368864	31 Dec 2013	Till Contract ends	
2	Chemical Waste Producer Registration	North Portal Waste Producers Number: No.5213-652-D2523-01	25 Mar 2014	Till Contract ends	
		Mid-Vent Portal	25 Mar 2014	Till Contract	

T4	D : (License/	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
		Waste Producers Number: No.5213-634-D2524-01		ends
		South Portal Waste Producers Number: No.5213-634-D2526-01	9 Apr 2014	Till Contract ends
3	Water Pollution	No.WT00018374-2014	8 Oct 2014	30 Sep 2019
	Control Ordinance -	No.: W5/1I389	28 Mar 2014	31 Mar 2019
	Discharge License	No. WT00023063-2015	18 Dec 2015	31 Mar 2019
		No.: W5/1I392	28 Mar 2014	31 Mar 2019
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7019105	8 Jan 2014	Till Contract ends
5	Construction Noise	GW-RN0738-15	18 Nov 2015	8 May 2016
	Permit	GW-RN0795-15	7 Dec 2015	6 Jun 2016
		GW-RN0893-15	01-Jan-2016	27-Jun-2016
		GW-RN0057-16	28-Feb-2016	27-May-2016
		GW-RN0059-16	24-Feb-2016	23-Apr-2016
		GW-RN0067-16	28-Feb-2016	27-May-2016
		GW-RN0068-16	23-Feb-2016	22-Apr-2016
		GW-RN0071-16	02-Feb-16	31-Jul-2016
		GW-RN0077-16	07-Feb-2016	06-Aug-2016
		GW-RN0167-16	18-Mar-2016	17-May-2016
		GW-RN0199-16	24-Mar-2016	17-Sep-2016
		GW-RN0323-16	30-Apr-2016	29-Jun-2016
		GW-RN0321-16	30-Apr-2016	29-Jun-2016
		GW-RN0359-16	20-May-2016	19-Aug-2016
		GW-RN0378-16	30-May-2016	29-Aug-2016
		GW-RN0332-16	09-May-2016	08-Aug-2016
6	Specified Process License (Mortar Plant Operation)	L-3-251(1)	12-Apr-2016	11-Apr-2021
	11 11 11 11 11	Contract 3	15.10010	mu a
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 362101	17 Jul 2013	Till Contract ends
2	Chemical Waste Producer Registration	Waste Producers Number: No.:5113-634-C3817-01	7 Oct 2013	Till Contract ends
3	Water Pollution Control Ordinance - Discharge License	No.:WT00016832 – 2013	28 Aug 13	31 Aug 2018
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017914	2 Aug 13	Till Contract ends

10

Thoras	Deganinti	License/	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
5	Construction Noise	GW-RN0892-15	9 Jan 2016	8 July 2016
	Permit	GW-RN0064-16	16 Feb 2016	13 Aug 2016
		GW-RN0086-16	16 Feb 2016	7 May 2016
		GW-RN0094-16	6 Mar 2016	22 May 2016
		GW-RN0096-16	6 Mar 2016	12 Jun 2016
		GW-RN0097-16	1 Mar 2016	17 Jun 2016
		GW-RN0098-16	1 Mar 2016	4 Sep 2016
		GW-RN0113-16	25 Feb 2016	24 Aug 2016
		GW-RN0115-16	1 Mar 2016	7 May 2016
		GW-RN0139-16	2 Mar 2016	24 Aug 2016
		GW-RN0140-16	2 Mar 2016	24 Aug 2016
		GW-RN0158-16	8 Mar 2016	31 Aug 2016
		GW-RN0168-16	15 Mar 2016	14 Jun 2016
		GW-RN0170-16	11 Mar 2016	10 Sep 2016
		GW-RN0218-16	6 April 2016	30 Sep 2016
		GW-RN0233-16	11 April 2016	10 Oct 2016
		GW-RN0244-16	16 April 2016	13 May 2016
		GW-RN0297-16	4 May 2016	30 June 2016
		GW-RN0303-16	30 April 2016	29 July 2016
		GW-RN0307-16	10 May 2016	9 Sep 2016
		GW-RN0308-16	10 May 2016	9 Sep 2016
		GW-RN0309-16	30 April 2016	29 Oct 2016
		GW-RN0305-16	5 May 2016	4 Aug 2016
		Contract 5		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 359338	13 May 2013	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-642-S3735-01	8 Jun 2013	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: W5/1G44/1	8 Jun 13	30 Jun 2018
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017351	29 Apr 13	Till the end of Contract
		Contract 6	20.1	mu d
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390614	29 Jun 2015	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-652-C3969-01	31 Aug 2015	Till the end of Contract
3	Waste Disposal Regulation - Billing Account for Disposal	Account No. 7022707	9 Jul 2015	Till the end of Contract

T4	D	License/	Permit Status		
Item	Description	Ref. no.	Effective Date	Expiry Date	
	of Construction Waste				
4	Water Pollution	No.:WT00024574-2016	31 May 2016	31 May 2021	
	Control Ordinance - Discharge License	No.:WT00024576-2016	31 May 2016	31 May 2021	
		Contract SS C505			
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390974	13 Jul 2015	Till the end of Contract	
2	Chemical Waste Producer Registration	Waste Producer No.: 5213-642-L1048-07	16 Sep 2015	Till the end of Contract	
3	Water Pollution Control Ordinance - Discharge License	No.: WT00022774-2015	17 Nov 2015	30 Nov 2020	
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022831	23 Jul 2015	Till the end of Contract	
5	Construction Noise	PP-RN0013-16	14 April 2016	22 May 2016	
	Permit	GW-RN0197-16	23 Mar 2016	22 May 2016	
		GW-RN0209-16	23 Mar 2016	22 May 2016	
		PP-RN0007-16	10 Mar 2016	9 May 2016	
		PP-RN0015-16	16 May 2016	15 July 2016	
		GW-RN0337-16	23 May 2016	22 July 2016	
		Contract 7			
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 397015	21 Dec 2015	Till the end of Contract	
2	Chemical Waste Producer Registration	Waste Producer No.: 5214-641-K3202-01	24 Mar 2016	Till the end of Contract	
3	Water Pollution Control Ordinance - Discharge License	No.: WT00022774-2015	10 May 2016	31 May 2021	
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024129	21 Jan 2016	Till the end of Contract	
5	Construction Noise Permit	GW-RN0162-16	23 Mar 2016	22 May 2016	
		Contract 4			
1	Air pollution Control (Construction Dust) Regulation	Application is under prepara			
2	Chemical Waste Producer Registration	Application is under preparation			
3	Water Pollution Control Ordinance - Discharge License	Application is under prepara	tion		

Item	Description	License/l	cense/Permit Status		
	Description	Ref. no.	Effective Date er preparation	Expiry Date	
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Application is under preparation			

3 SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Water quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1 Summary of EM&A Requirements

Environmental Issue	Parameters
Air Onolity	1-hour TSP by Real-Time Portable Dust Meter; and
Air Quality	24-hour TSP by High Volume Air Sampler.
	• L _{eq(30min)} in normal working days (Monday to Saturday) 07:00-19:00
	except public holiday; and
Noise	• 3 sets of consecutive L _{eq(5min)} on restricted hours i.e. 19:00 to 07:00
INDISC	next day, and whole day of public holiday or Sunday
	Supplementary information for data auditing, statistical results such
	as L ₁₀ and L ₉₀ shall also be obtained for reference.
	In-situ Measurements
	 Dissolved Oxygen Concentration (mg/L);
	Dissolved Oxygen Saturation (%);
	Turbidity (NTU);
Water Quality	• pH unit;
	Water depth (m); and
	 Temperature (°C).
	Laboratory Analysis
	Suspended Solids (mg/L)

3.3 MONITORING LOCATIONS

3.3.1 The designated monitoring locations as recommended in the *EM&A Manual* are shown in *Appendix D*. As the access to some of the designated monitoring locations was questionable due to safety reason or denied by the landlords, alternative locations therefore have had proposed. The proposed alternative monitoring locations has updated in the revised EM&A Programme which verified by IEC and certified by ET Leader prior submitted to EPD on 10 July 2013. *Table 3-2*, *Table 3-3* and *Table 3-4* are respectively listed the air quality, construction noise and water quality monitoring locations for the Project and a map showing these monitoring stations is presented in *Appendix E*.

Table 3-2 Impact Monitoring Stations - Air Quality

Station ID	Description	Works Area	Related to the Work Contract
AM1b^	Open area at Tsung Yuen Ha Village	BCP	SS C505
			Contract 5
			Contract 7
AM2	Village House near Lin Ma Hang Road	LMH to Frontier	Contract 5
		Closed Area	Contract 6

Station ID	Description	Works Area	Related to the Work Contract
AM3	Ta Kwu Ling Fire Service Station of Ta	LMH to Frontier	Contract 5
	Kwu Ling Village.	Closed Area	Contract 6
AM4b^	House no. 10B1 Nga Yiu Ha Village	LMH to Frontier Closed Area	Contract 6
AM5a^	Ping Yeung Village House	Ping Yeung to Wo Keng Shan	Contract 6
AM6	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6
AM7b@	Loi Tung Village House	Sha Tau Kok	Contract 2
		Road	Contract 6
AM8	Po Kat Tsai Village No. 4	Po Kat Tsai	Contract 2
AM9b#	Nam Wa Po Village House No. 80	Fanling	Contract 3

[#] Proposal for the change of air quality monitoring location from AM9a to AM9b was submitted to EPD on 4 Nov 2013 after verified by the IEC and it was approved by EPD (EPD's ref.: (15) in EP 2/N7/A/52 Pt.10 dated 8 Nov 2013).

Table 3-3 Impact Monitoring Stations - Construction Noise

Station ID	Description	Works Area	Related to the Work Contract
NM1	Tsung Yuen Ha Village House No. 63	ВСР	SS C505 Contract 5 Contract 7
NM2a#	Village House near Lin Ma Hang Road	Lin Ma Hang to Frontier Closed Area	Contract 5, Contract 6
NM3	Ping Yeung Village House (facade facing northeast)	Ping Yeung to Wo Keng Shan	Contract 6
NM4	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6
NM5	Village House, Loi Tung	Sha Tau Kok Road	Contract 2, Contract 6
NM6	Tai Tong Wu Village House 2	Sha Tau Kok Road	Contract 2, Contract 6
NM7	Po Kat Tsai Village	Po Kat Tsai	Contract 2
NM8	Village House, Tong Hang	Fanling	Contract 2 Contract 3
NM9	Village House, Kiu Tau Village	Fanling	Contract 3
NM10	Nam Wa Po Village House No. 80	Fanling	Contract 3

[#] Proposal for the change of construction noise monitoring location from NM2 to NM2a was verified by the IEC on 6 May 2016 and was effective on 9 May 2016.

^{*} Proposal for the change of air quality monitoring location from AM1 to AM1a was submitted to EPD on 24 March 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (6) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

[@] Proposal for the change of air quality monitoring location from AM7a to AM7b was submitted to EPD on 4 June 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (7) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

[^] Proposal for change of air quality monitoring locations was enclosed in the updated EM&A Programme which approval by EPD on 29 Mar 2016.

Table 3-4 Impact Monitoring Stations - Water Quality

Coordinates of Re						
Station	Description		Alternative	Nature of the location	Related to the Work	
ID	Description	Location		reaction the location	Contract	
	Downstream	2000		Alternative location located	SS C505	
WM1	of Kong Yiu	833 679	845 421	at upstream 51m of the	Contract 5	
	Channel			designated location	Contract 6	
XX 7 4 1	Upstream of				SS C505	
WM1-	Kong Yiu	834 185 845 917		NA	Contract 5	
Control	Channel				Contract 6	
	Downstream			Alternative location located		
WM2A	of River	834 204	844 471	at downstream 81m of the	Contract 6	
	Ganges			designated location		
WM2A-				Alternative location located		
	Upstream of River Ganges	835 377	844 188	at upstream 160m of the	Contract 6	
Controlx	River Ganges			designated location		
	Downstream					
WM2B	of River	835 433	843 397	NA	Contract 6	
	Ganges					
WM2B-	Upstream of			Alternative location located		
Control	River Ganges	835 835	843 351	at downstream 31m of the	Contract 6	
Control	Terver Guinges			designated location		
	Downstream of River Indus	836 206	842 270	Alternative location located	Contract 2 Contract 6	
WM3x				at downstream 180m of the		
	or rever meas			designated location	Contract o	
WM3-	Upstream of			Alternative location located	Contract 2	
Control	River Indus		842 400	at downstream 26m of the	Contract 2	
				designated location		
	Downstream			Alternative location located	Contract 2	
WM4	of Ma Wat	833 850	838 338	at upstream 11m of the	Contract 3	
	Channel			designated location		
WM4-	Kau Lung	024.026	025.605	Alternative location located	Contract 2 Contract 3	
Control A	Hang Stream	834 028	837 695	at downstream 28m of the		
	_			designated location		
WM4-	Upstream of	022760	027205	Alternative location located	Contract 2	
Control B	Ma Wat	833760	837395	at upstream 15m of the	Contract 3	
	Channel	: I F14.0.4.D		designated location		

Note: EPD has approved the revised EM&A Programme on 29th March 2016. If the measured water depth of the monitoring station is lower than 150 mm, alternative location (WM3x and WM2A-Controlx) based on the criteria were selected to perform water monitoring in accordance with the updated EM&A Programme (Rev. 05) (Section 4.1.4)

3.4 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in *Sections 2.1.6*, *3.1.5* and *4.1.6* of the approved *EM&A Manual* and presented as follows.

Air Quality Monitoring

- 3.4.1 Frequency of impact air quality monitoring is as follows:
 - 1-hour TSP 3 times every six days during course of works
 - 24-hour TSP Once every 6 days during course of works.

Noise Monitoring

3.4.2 One set of $L_{eq(30min)}$ as 6 consecutive $L_{eq(5min)}$ between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time

periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), 3 consecutive $L_{eq(5min)}$ measurement will depended CNP requirements to undertake. Supplementary information for data auditing, statistical results such as L_{10} and L_{90} shall also be obtained for reference.

Water Quality Monitoring

3.4.3 The water quality monitoring frequency shall be 3 days per week during course of works. The interval between two sets of monitoring shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.3 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

Table 3-5 Air Quality Monitoring Equipment

Equipment	Model	
	24-Hr TSP	
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170*	
Calibration Kit	TISCH Model TE-5025A*	
	1-Hour TSP	
Portable Dust Meter	Sibata LD-3B Laser Dust monitor Particle Mass Profiler &	
Tottable Bust Weter	Counter*	

^{*} Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

Wind Data Monitoring Equipment

- 3.5.4 According to the approved EM&A Manual, wind data monitoring equipment shall also be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
 - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
 - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
 - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.
 - 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.5.5 ET has liaised with the landlords of the successful granted HVS installation premises. However, the owners rejected to provide premises for wind data monitoring equipment installation.
- 3.5.6 Under this situation, the ET proposed alternative methods to obtain representative wind data. Meteorological information as extracted from "the Hong Kong Observatory Ta Kwu Ling Station" is alternative method to obtain representative wind data. For Ta Kwu Ling Station, it is located nearby the Project site. Moreover, this station is located at 15m above mean sea level while its anemometer is located at 13m above the existing ground which in compliance with the general setting up requirement. Furthermore, this station also can be to provide the humidity, rainfall, and air pressure and temperature etc. meteorological information. In Hong Kong of a lot development

projects, weather information extracted from Hong Kong Observatory is common alternative method if weather station installation not allowed.

Noise Monitoring

- 3.5.7 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.8 Noise monitoring equipment to be used for monitoring is listed in *Table 3-6*.

Table 3-6 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	B&K Type 2238* or Rion NL-31 or Rion NL-52*
Calibrator	B&K Type 4231* or Cesva CB-5 or Rion NC-74
Portable Wind Speed Indicator	Testo Anemometer

^{*} Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.5.9 Sound level meters listed above comply with the *International Electrotechnical Commission Publications 651: 1979 (Type 1)* and *804: 1985 (Type 1)* specifications, as recommended in TM issued under the NCO. The acoustic calibrator and sound level meter to be used in the impact monitoring will be calibrated yearly.

Water Quality Monitoring

- 3.5.10 DO and water temperature should be measured in-situ by a DO/temperature meter. The instrument should be portable and weatherproof using a DC power source. It should have a membrane electrode with automatic temperature compensation complete with a cable. The equipment should be capable of measuring:
 - a DO level in the range of 0-20 mg/l and 0-200% saturation; and
 - a temperature of between 0 and 45 degree Celsius.
- 3.5.11 A portable pH meter capable of measuring a range between 0.0 and 14.0 should be provided to measure pH under the specified conditions accordingly to the APHA Standard Methods.
- 3.5.12 The instrument should be portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
- 3.5.13 A portable, battery-operated echo sounder or tape measure will be used for the determination of water depth at each designated monitoring station as appropriate.
- 3.5.14 A water sampler e.g. Kahlsico Water Sampler, which is a transparent PVC cylinder with capacity not less than 2 litres, will be used for water sampling if water depth over than 0.5m. For sampling from very shallow water depths e.g. <0.5 m, water sample collection will be directly from water surface below 100mm use sampling plastic bottle to avoid inclusion of bottom sediment or humus. Moreover, Teflon/stainless steel bailer or self-made sampling buckets maybe used for water sampling. The equipment used for sampling will be depended the sampling location and depth situations.
- 3.5.15 Water samples for laboratory measurement of SS will be collected in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory in the same day as the samples were collected.
- 3.5.16 Analysis of suspended solids should be carried out in a HOKLAS or other accredited laboratory. Water samples of about 1L should be collected at the monitoring stations for carrying out the

laboratory suspended solids determination. The SS determination work should start within 24 hours after collection of the water samples. The SS analyses should follow the *APHA Standard Methods 2540D* with Limit of Reporting of 2 mg/L.

3.5.17 Water quality monitoring equipment used in the impact monitoring is listed in *Table 3-7*. Suspended solids (SS) analysis is carried out by a local HOKLAS-accredited laboratory, namely *ALS Technichem (HK) Pty Ltd*.

Table 3-7 Water Quality Monitoring Equipment

Equipment	Model
Water Depth Detector	Eagle Sonar or tape measures
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends or teflon/stainless steel bailer or self-made sampling bucket
Thermometer & DO meter	YSI Professional Plus /YSI PRO20 Handheld Dissolved Oxygen Instrument* / YSI 550A Multifunctional Meter/ YSI Professional DSS*
pH meter	YSI Professional Plus / AZ8685 pH pen-style meter*/ YSI 6820/650MDS/ YSI Professional DSS*
Turbidimeter	Hach 2100Q*/ YSI 6820/ 650MDS/ YSI Professional DSS*
Sample Container	High density polythene bottles (provided by laboratory)
Storage Container	'Willow' 33-liter plastic cool box with Ice pad

^{*} Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.6 MONITORING METHODOLOGY

1-hour TSP Monitoring

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

24-hour TSP Monitoring

- 3.6.3 The equipment used for 24-hour TSP measurement is Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:
 - (a.) An anodized aluminum shelter;
 - (b.) A 8"x10" stainless steel filter holder;
 - (c.) A blower motor assembly;
 - (d.) A continuous flow/pressure recorder;
 - (e.) A motor speed-voltage control/elapsed time indicator;
 - (f.) A 7-day mechanical timer, and
 - (g.) A power supply of 220v/50 Hz
- 3.6.4 The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using Tisch Calibration Kit Model TE-5025A. Calibration would carry out in two month interval.

3.6.5 24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

Noise Monitoring

- Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels dB(A). Supplementary statistical results (L_{10} and L_{90}) were also obtained for reference.
- 3.6.7 During the monitoring, all noise measurements would be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). $Leq_{(30min)}$ in six consecutive $Leq_{(5min)}$ measurements will use as the monitoring parameter for the time period between 0700-1900 hours on weekdays; and also $Leq_{(15min)}$ in three consecutive $Leq_{(5min)}$ measurements would be used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.6.8 Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking is performed before and after the noise measurement.

Water Quality

3.6.9 Water quality monitoring is conducted at the designated or alternative locations. The sampling procedures with the in-situ monitoring are presented as below:

Sampling Procedure

- 3.6.10 A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder or tape measurement is used for the determination of water depth at each station. At each station, water sample would be collected from 0.1m below water surface or the water surface to prevent the river bed sediment for stirring.
- 3.6.11 The sample container will be rinsed with a portion of the water sample. The water sample then will be transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.
- 3.6.12 Before sampling, general information such as the date and time of sampling, weather condition as well as the personnel responsible for the monitoring would be recorded on the field data sheet.
- 3.6.13 A 'Willow' 33-liter plastic cool box packed with ice will be used to preserve the water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4°C as possible without being frozen. Samples collected are delivered to the laboratory upon collection.

In-situ Measurement

- 3.6.14 YSI PRO20 Handheld Dissolved Oxygen Instrument or YSI Professional DSS is used for water insitu measures, which automates the measurements and data logging of temperature, dissolved oxygen and dissolved oxygen saturation.
- 3.6.15 A portable AZ Model 8685 pH pen-style meter or YSI Professional DSS is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0-14 and readable to 0.1.
- 3.6.16 A portable Hach 2100Q Turbidimeter or YSI Professional DSS is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU.

3.6.17 All in-situ measurement equipment are calibrated by HOKLAS accredited laboratory of three month interval.

Laboratory Analysis

3.6.18 All water samples analyzed Suspended Solids (SS) will be carried out by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS determination using *APHA Standard Methods 2540D* as specified in the *EM&A Manual* will start within 48 hours of water sample receipt.

3.7 EQUIPMENT CALIBRATION

- 3.7.1 Calibration of the HVS is performed upon installation and thereafter at bimonthly intervals in accordance with the manufacturer's instruction using the certified standard calibrator (TISCH Model TE-5025A). Moreover, the Calibration Kit would be calibrated annually. The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.7.2 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment would be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.
- 3.7.3 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.7.4 All water quality monitoring equipment would be calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.7.5 The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix F*.

3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise and water quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-8*, *3-9* and *3-10*.

Table 3-8 Action and Limit Levels for Air Quality Monitoring

Monitoring Station	Action 1	Level (μg/m³)	Limit l	Level (µg/m³)
Within the Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP
AM1b	265	143		
AM2	268	149		
AM3	269	145		
AM4b	267	148		
AM5a	268	143	500	260
AM6	269	148		
AM7b	275	156		
AM8	269	144		
AM9b	271	151		

Table 3-9 Action and Limit Levels for Construction Noise

Monitoring Location	Action Level	Limit Level in dB(A)	
Withintoning Location	Time Period: 0700-1900 hours on normal weekdays		
NM1, NM2a, NM3, NM4, NM5, NM6, NM7, NM8, NM9, NM10	When one or more documented complaints are received	75 dB(A) ^{Note 1 & Note 2}	

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and 65 dB(A) during examination period

Table 3-10 Action and Limit Levels for Water Quality

Parameter	Performance	Monitoring Location				
Parameter	criteria	WM1	WM2A	WM2B	WM3	WM4
DO	Action Level	(*)4.23	(**)4.00	(*)4.74	(**)4.00	(*)4.14
(mg/L)	Limit Level	^(#) 4.19	(**)4.00	^(#) 4.60	(**)4.00	(#)4.08
	A ation I aval	51.3	24.9	11.4	13.4	35.2
Turbidity	Action Level	AND	120% of upstream control station of the same day			
(NTU)	Limit Level	67.6	33.8	12.3	14.0	38.4
	Lillit Level	AND	D 130% of upstream control station of the same day			
	Action Level	54.5	14.6	11.8	12.6	39.4
CC (ma/II)	Action Level	AND	120% of upstream control station of the same day			ame day
SS (mg/L)	Timit I and	64.9	17.3	12.4	12.9	45.5
	Limit Level	AND	130% of ups	tream control s	tation of the s	ame day

Remarks:

3.8.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix G*.

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.9.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- 3.9.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

^(*) The Proposed Action Level of Dissolved Oxygen is adopted to be used 5%-ile of baseline data

^(**) The Proposed Action & Limit Level of Dissolved Oxygen is used 4mg/L

^(#) The Proposed <u>Limit Level</u> of Dissolved Oxygen is adopted to be used 1%-ile of baseline data

4 AIR QUALITY MONITORING

4.1 GENERAL

- 4.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 5, 6, 7 and Contract SS C505. Hence, air quality monitoring was performed at all designated locations.
- 4.1.2 The air quality monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

4.2 AIR QUALITY MONITORING RESULTS IN REPORTING MONTH

4.2.1 In the Reporting Period, a total of *147* events of 1-hour TSP and *45* events 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Tables 4-1 to 4-9*. The detailed 24-hour TSP monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results – AM1b

	24-hour		1.	-hour TSP (μg	y/m ³)	
Date	$TSP \\ (\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading
6-May-16	21	3-May-16	13:00	91	77	87
13-May-16	55	9-May-16	13:41	38	36	41
18-May-16	67	13-May-16	10:12	96	104	91
24-May-16	77	19-May-16	13:00	74	61	68
30-May-16	35	25-May-16	13:11	85	92	90
		31-May-16	11:36	35	30	30
Average	51	Average		68		
(Range)	(21 - 77)	(Rang	ge)		(30 - 104)	

Table 4-2 Summary of 24-hour and 1-hour TSP Monitoring Results – AM2

	24-hour		1-hour TSP (μg/m³)						
Date	TSP (μg/m³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading			
6-May-16	86	3-May-16	13:03	93	72	87			
13-May-16	148	9-May-16	13:32	31	39	43			
18-May-16	117	13-May-16	9:55	113	118	87			
24-May-16	147	19-May-16	13:04	76	56	71			
31-May-16	79	24-May-16	13:07	85	94	90			
		31-May-16	11:18	37	25	26			
Average	116	Average		69					
(Range)	(79 - 148)	(Rang	ge)		(25 - 118)				

Table 4-3 Summary of 24-hour and 1-hour TSP Monitoring Results – AM3

	24-hour		1-hour TSP (μg/m³)						
Date	$TSP (\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading			
6-May-16	79	3-May-16	13:07	87	77	87			
13-May-16	52	9-May-16	13:23	43	40	36			
18-May-16	59	13-May-16	9:48	131	126	103			
24-May-16	103	19-May-16	13:08	80	77	82			
31-May-16	94	25-May-16	13:01	81	86	85			
		31-May-16	11:00	40	27	29			
Average	77	Average 73							
(Range)	(52 - 103)	(Rang	(Range) (27 – 131)						

Table 4-4 Summary of 24-hour and 1-hour TSP Monitoring Results – AM4b

	24-hour	1-hour TSP (µg/m³)						
Date TSP (μg/m ²		Date	Start Time	1 st reading	2 nd reading	3 rd reading		
4-May-16	94	5-May-16	10:21	87	80	85		
10-May-16	40	11-May-16	13:00	81	98	83		
16-May-16	67	17-May-16	10:47	73	70	83		
21-May-16	35	23-May-16	10:30	89	75	83		
27-May-16	25	28-May-16	10:21	63	71	68		
Average	52	Average		79				
(Range)	(25 - 94)	(Rang	ge)	(63 - 98)				

Table 4-5 Summary of 24-hour and 1-hour TSP Monitoring Results – AM5a

	24-hour	1-hour TSP (μg/m³)						
Date	TSP (µg/m³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
4-May-16	27	5-May-16	10:22	82	76	80		
10-May-16	43	11-May-16	13:30	139	117	126		
16-May-16	55	17-May-16	10:49	84	76	92		
21-May-16	33	23-May-16	10:31	74	79	84		
27-May-16	18	28-May-16	10:24	61	69	64		
Average	35	Average		87				
(Range)	(18 - 55)	(Rang	ge)	(61 - 139)				

Table 4-6 Summary of 24-hour and 1-hour TSP Monitoring Results – AM6

	24-hour	1-hour TSP (μg/m³)						
Date	TSP (μg/m³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
4-May-16	13	5-May-16	10:10	89	84	89		
10-May-16	41	11-May-16	13:13	83	96	80		
16-May-16	169	17-May-16	11:04	91	79	84		
21-May-16	45	23-May-16	10:21	77	83	82		
27-May-16	57	28-May-16	10:00	57	69	64		
Average	65	Average		80				
(Range)	(13 - 169)	(Rang	ge)	(57 – 96)				

Table 4-7 Summary of 24-hour and 1-hour TSP Monitoring Results – AM7b

	24-hour	1-hour TSP (μg/m³)						
Date	$TSP (\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
4-May-16	107	5-May-16	9:06	98	76	87		
10-May-16	38	11-May-16	9:30	91	102	95		
16-May-16	100	17-May-16	9:23	59	58	61		
21-May-16	54	23-May-16	9:15	92	100	84		
27-May-16	40	28-May-16	9:25	49	53	48		
Average	68	Average		77				
(Range)	(38 –107)	(Rang	ge)	(48-102)				

Table 4-8 Summary of 24-hour and 1-hour TSP Monitoring Results – AM8

	24-hour	1-hour TSP (µg/m³)						
Date	$TSP (\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
4-May-16	30	5-May-16	13:01	106	76	86		
10-May-16	28	11-May-16	9:43	69	80	74		
16-May-16	44	17-May-16	13:00	86	82	71		
21-May-16	58	23-May-16	13:04	97	106	87		
27-May-16	21	28-May-16	13:06	70	46	39		
Average	36	Average		78				
(Range)	(21 - 58)	(Rang	ge)		(39 -106)			

Table 4-9 Summary of 24-hour and 1-hour TSP Monitoring Results – AM9b

	24-hour		g/m ³)			
Date	$TSP (\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading
6-May-16	22	3-May-16	13:08	58	69	62
13-May-16	60	9-May-16	13:09	43	41	42
18-May-16	72	13-May-16	13:14	102	111	92
24-May-16	88	19-May-16	9:54	68	60	65
30-May-16	59	25-May-16	13:01	65	49	59
		31-May-16	9:33	62	47	45
Average	60	Average		63		
(Range)	(22 - 88)	(Rang	ge)		(41 – 111)	

- 4.2.2 As shown in *Tables 4-1 to 4-9*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.3 The meteorological data during the impact monitoring days are summarized in *Appendix K*.

5 CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 5, 6, 7 and Contract SS C505 and noise monitoring was performed at all designated locations.
- 5.1.2 Relocation of Noise Monitoring Location NM2 to NM2a was proposed and verified by IEC on 6 May 2016 and was effective on 9 May 2016.
- 5.1.3 The noise monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

5.2 Noise Monitoring Results in Reporting Month

In the Reporting Period, a total of **45** event noise measurements were carried out at the designated locations. The sound level meter was set in 1m from the exterior of the building façade including noise monitoring locations NM1, NM3, NM4, NM5, NM6, NM7, NM8 and NM9. Therefore, no façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines. However, free-field status were performed at NM2a and NM10 and façade correction (+3 dB(A)) has added according to the requirement in this month. The noise monitoring results at the designated locations are summarized in *Tables 5-1 and 5-2*. The detailed noise monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Table 5-1 Summary of Construction Noise Monitoring Results

	Construction Noise Level (L _{eq30min}), dB(A)									
Date	NM1	NM2/NM2a*	NM8	NM9	NM10 ^(*)					
3-May-16	62	62	58	62	60					
9-May-16	67	70*	59	61	67					
19-May-16	52	68*	59	68	66					
25-May-16	72	72*	58	62	62					
31-May-16	67	59*	54	59	60					
Limit Level	_		75 dB(A)	_	·					

Remarks

Table 5-2 Summary of Construction Noise Monitoring Results

	Construction Noise Level (L _{eq30min}), dB(A)								
Date	NM3	NM4	NM5	NM6	NM7				
5-May-16	63	64	54	60	64				
11-May-16	64	61	61	65	65				
17-May-16	63	65	61	51	61				
23-May-16	60	62	57	63	64				
Limit Level			75 dB(A)						

5.2.2 As shown in *Tables 5-1 and 5-2*, the noise level measured at all designated monitoring locations were below 75dB(A). Furthermore, there was no noise complaints (Action Level exceedance) received by the RE, CEDD, Architect/AR/ and the Contractors in the Reporting Period. Therefore, no Action or Limit Level exceedance was triggered and no corrective action was required.

^(*) façade correction (+3 dB(A) is added according to acoustical principles and EPD guidelines

6 WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 In the Reporting Period, construction works under the project has been commenced in Contracts 2, 3, 5, 6, 7 and Contract SS C505 and water quality monitoring was performed at all designated locations. The water quality monitoring schedule is presented in *Appendix H*. The monitoring results are summarized in the following sub-sections.

6.2 RESULTS OF WATER QUALITY MONITORING

- 6.2.1 In the Reporting Period, a total of thirteen (13) sampling days was scheduled to carry out for all designated locations with their control stations. Except monitoring station WM4, total twenty-seven (27) Limit Level (LL) of water quality exceedances were respectively recorded at the monitoring stations WM1, WM2A, WM2B and WM3. According to "Event and Action Plan" stipulation, additional water quality monitoring days respectively were conducted two days for WM1 and its control station, five days for WM2A and its control station, & four days for WM3 and its control stations.
- 6.2.2 The key monitoring parameters including Dissolved Oxygen, Turbidity and Suspended Solids are summarized in *Tables 6-1 to 6-5*. Breaches of water quality monitoring criteria are shown in *Table 6-6*. Detailed monitoring database including in-situ measurements and laboratory analysis data are shown in *Appendix I* and the relevant graphical plot are shown in *Appendix J*.

Table 6-1 Water Quality Monitoring Results Associated of Contracts 2 and 3

Date	Diss	Dissolved Oxygen (mg/L)			Turbidity (NTU)			Suspended Solids (mg/L)		
	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	
3-May-16	6.9	7.7	5.7	10.0	7.7	7.7	10.5	9.5	12.5	
5-May-16	7.3	7.8	6.3	13.1	5.5	7.5	14.5	6.5	8.0	
7-May-16	7.6	7.8	6.8	8.7	5.7	9.2	14.0	6.5	20.0	
9-May-16	7.2	7.8	6.6	8.0	5.8	16.5	10.0	5.5	27.5	
11-May-16	7.4	7.8	7.1	28.7	11.4	13.9	7.5	8.0	9.5	
13-May-16	8.1	8.1	7.3	7.9	7.3	7.0	6.0	5.0	8.0	
17-May-16	8.3	8.3	7.5	8.3	185.5	6.8	9.5	167.0	10.5	
19-May-16	8.1	8.0	8.3	17.4	8.1	6.5	16.5	9.0	7.5	
21-May-16	7.6	7.9	7.3	35.1	27.0	28.4	39.0	26.5	30.0	
23-May-16	7.5	7.6	7.1	11.0	761.0	18.0	11.0	435.5	11.0	
25-May-16	7.9	7.7	6.8	15.1	8.9	12.9	15.5	9.5	22.0	
27-May-16	6.7	7.4	6.2	118.5	107.5	71.2	190.0	163.5	91.5	
31-May-16	7.0	7.2	6.5	15.7	10.4	8.7	18.0	12.0	14.0	

Table 6-2 Water Quality Monitoring Results Associated of Contracts 5, 6 and SS C505

Date	Dissolved Oxygen (mg/L)			oidity ΓU)	Suspended Solids (mg/L)		
	WM1	WM1- Control	WM1	WM1- Control	WM1	WM1- Control	
3-May-16	7.6	7.8	40.2	9.3	53.5	8.0	
5-May-16	6.9	7.3	23.0	9.1	39.0	8.0	
7-May-16	7.5	7.8	19.2	9.8	29.5	7.5	
9-May-16	7.0	8.0	31.4	15.2	40.0	9.5	
11-May-16	7.9	7.7	20.4	9.9	30.0	8.5	
13-May-16	7.7	8.3	42.4	9.2	51.0	8.0	
17-May-16	7.3	8.1	69.0	11.1	70.5	7.5	
#18-May-16			35.0	25.1	45.0	39.0	
19-May-16	7.4	8.2	70.6	25.2	127.0	11.5	
#20-May-16			12.4	8.7	15.0	3.0	
21-May-16	7.6	8.0	46.9	41.6	42.5	37.5	
23-May-16	7.3	7.5	19.0	12.7	22.5	9.5	
25-May-16	7.4	7.8	12.0	8.9	9.5	6.5	

Doto		l Oxygen g/L)	Turk (N	oidity ΓU)	Suspended Solids (mg/L)		
Date	WM1	WM1- Control	WM1	WM1- Control	WM1	WM1- Control	
27-May-16	6.5	7.3	35.4	10.5	50.5	9.0	
31-May-16	7.4	7.0	16.2	10.6	21.5	11.5	

Remarks:

bold with underline indicated Limit Level exceedance

Table 6-3 Water Quality Monitoring Results Associated only Contract 6

Date	Dissolved Oxygen (mg/L)				Turbidity (NTU)				Suspended Solids (mg/L)			
	WM2A	WM2A- C	WM2B	WM2B- C	WM2A	WM2A- C	WM2B	WM2B- C	WM2A	WM2A- C	WM2B	WM2B - C
3-May-16	7.7	7.8	7.9	7.8	19.1	5.1	8.4	5.3	13.5	<2	3	<2
5-May-16	7.6	7.9	8.0	7.9	11.5	7.5	10.6	3.0	9.5	6	7.5	5
7-May-16	7.4	7.9	7.4	7.9	4.9	3.5	<u>23.0</u>	5.7	4.5	2	3.5	4.0
9-May-16	7.5	6.6	8.3	7.8	14.1	8.9	4.7	2.8	12	20.5	2	4.5
11-May-16	7.7	8.1	7.9	6.4	<u>186.0</u>	12.1	10.6	4.5	<u>206.5</u>	6	11.2	3
#12-May-16					21.4	4.8			14.1	3		
13-May-16	7.8	7.9	8.4	6.7	22.5	4.1	2.3	2.8	9.0	<2	<2	<2
17-May-16	8.0	7.8	7.0	8.4	<u>58.6</u>	5.1	4.1	3.6	<u>65.5</u>	<2	4	7.5
#18-May-16					21.8	5.7			14.0	6		
19-May-16	7.8	7.8	8.2	7.1	22.9	4.7	5.0	3.3	13.5	4.5	<2	3
21-May-16	8.0	8.1	7.9	7.0	<u>59.2</u>	10.6	<u>99.9</u>	6.0	<u>81.5</u>	8.5	<u>152.0</u>	7
23-May-16	*	*	8.3	7.1	*	*	11.0	4.9	*	*	11.2	<2
#24-May-16					*	*	7.2	6.6	*	*	7	8
25-May-16	7.2	7.8	7.9	7.3	24.1	5.4	3.0	2.4	14.1	5	4.5	4
27-May-16	7.3	7.6	8.2	7.0	<u>273.0</u>	6.7	5.8	3.3	189.5	4.5	<2	2
#28-May-16					<u>70.7</u>	11.8			<u>94.0</u>	<2		
#30-May-16	7.4	7.7			<u>53.3</u>	3.7			<u>76.0</u>	<2		
31-May-16	7.4	7.7	7.4	6.9	<u>68.1</u>	3.5	4.6	2.9	84.5	<2	5	<2

Remarks:

bold with underline indicated Limit Level exceedance

Table 6-4 Water Quality Monitoring Results Associated Contracts 2 and 6

Date		d Oxygen g/L)		oidity ΓU)	Suspended Solids (mg/L)		
	WM3	WM3- Control	WM3	WM3- Control	WM3	WM3- Control	
3-May-16	7.6	7.0	11.7	6.0	8.5	8.0	
5-May-16	7.1	6.8	23.5	28.5	45.5	70.5	
7-May-16	7.5	7.2	7.4	39.1	10.5	103.5	
9-May-16	7.2	6.5	20.4	10.2	31.0	26.5	
10-May-16			<u>63.1</u>	45.1	69.0	70.0	
11-May-16	6.9	7.0	5.7	3.4	12.1	11.0	
12-May-16			77.8	5.4	74.2	7.0	
13-May-16	7.5	5.8	12.8	5.2	12.5	6.0	
16-May-16			13.0	4.4	12.0	3.0	
17-May-16	7.2	7.5	3.8	4.9	<2	5.5	
19-May-16	8.0	7.5	3.1	13.2	4.0	104.0	
21-May-16	7.4	7.5	<u>57.7</u>	28.5	<u>56.0</u>	36.0	
23-May-16	7.2	7.1	12.0	13.0	11.5	22.5	
24-May-16			11.4	4.2	12.0	5.0	
25-May-16	7.6	7.5	12.4	6.4	12.0	13.5	

^{*} Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

^{*}Unsuccessful to undertake the monitoring

Doto		l Oxygen g/L)	Turb (N)	oidity ΓU)	Suspended Solids (mg/L)		
Date	WM3	WM3- Control	WM3	WM3- Control	WM3	WM3- Control	
27-May-16	6.9	7.2	13.2	6.7	18.5	77.0	
31-May-16	6.8	6.5	12.2	5.9	12.5	8	

Remarks:

bold with underline indicated Limit Level exceedance

Table 6-5 Breaches of Water Quality Monitoring Criteria in Reporting Period

Location		olved gen	Turb	Turbidity		ended lids	Total Exceedance		
	Action	Limit	Action	Limit	Action Limit		Action	Limit	
WM1	0	0	0	2	0	2	0	4	
WM2A	0	0	0	7	0	7	0	14	
WM2B	0	0	0	2	0	1	0	3	
WM3	0	0	0	4	0	2	0	6	
WM4	0	0	0	0	0	0	0	0	
No of Exceedance	0	0	0	15	0	12	0	27	

- 6.2.3 In this Reporting Period, a total of twenty-five (27) Limit Level (LL) exceedances, namely fifteen (15) LL exceedances of turbidity and twelve(12) LL exceedances of Suspended Solids were recorded for the Project and they are summarized in *Table 6-5*.
- 6.2.4 NOE was issued to relevant parties upon confirmation of the monitoring result. The cause of exceedance is summarized in *Table 6-6* accordance to investigation findings and the detailed investigation reports for the exceedances are attached in *Appendix N*.

Table 6-6 Summary of Water Quality Exceedance in the Reporting Period

	1		
Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance
17 th , 19 th May 2016	WM1 (C5, C6 and SS C505)	NTU & SS	According to the field photos, accumulation of rubbish were observed at the bar screen of the box culvert near WM1 on 17 & 19 May 2016. Water flow near WM1 was therefore retarded and turbid water cumulated at WM1. It is considered that the exceedances were unlikely due to the Contract 5, 6 and SSC505.
11 th , 17 th , 21 th , 27 th , 28 th , 30 th , 31 th May 2016	WM2A (C6)	NTU and/or SS	According to the site information provided from the CCKJV, construction activities carried out on 11 th , 17 th , 21 th , 27 th , 28 th , 30 th , 31 th May 2016 at Bridge D (upstream of WM2A) were mainly piling works. Wastewater treatment facilities including one AquaSed and three series of sedimentation tank have been installed for piling work. On 11 th May 2016, As reported by CCKJV, a worker incorrectly connected inlet pipe which carried wastewater collected from the site to the tank which received effluent from the AquaSed(SH-15). Then, the wastewater was discharged into the river through the outlet pipe of the tank which received effluent of the AquaSed (SH-15). It is considered that the exceedance was related to the Contract. On 17 th May 2016, it was observed that water at upstream of WM2A was visually clear though some silt was cumulated at the river bed. As reported by CCKJV, there was no discharge of effluent from AquaSed (SH-15) and no discharge of effluent to the open channel on 17 May 2016. And the AquaSed was under maintenance on that

^{*} Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance
			 day. Also, during joint site weekly inspection on 19 May 2016 with RE, ET, IEC and Contractor, no adverse water impact was observed on upstream of WM2A. Thus, it is considered that the exceedance on WM2A is unlikely related to the construction activities of the Contract. According to the Daily Extract of Meteorological Observations from the Hong Kong Observatory, heavy rainfall was recorded on 21 May 2016. Water flow rate increased under the heavy rain and the sediment at the river bed was stirred up, resulting in turbid water. Thus, it is considered that the exceedance on 21 May 2016 was due to the heavy rain and unlikely due to the construction activities of the Contract.
			• During joint site inspection with RE, IEC, ET and Contractor on 2 June 2016, it was observed that unknown source of turbid water was seeping out from the river bed at upstream of WM2A continuously, turning the water in the river turbid. In our investigation, it is considered that the exceedances at WM2A on 27 th , 28 th , 30 th , 31 th May were related to the unknown source of turbid water from the river bed.
7 th , 21 th May 2016	WM2B (C6)	NTU and/or SS	According to the site information as provided by C6, construction activities carried out at North Portal (upstream of WM2B) in the reporting period was included the piling and slope works. Daily self-monitoring has conducted by the Contractor to ensure effluent is fully compliance with the TM criteria. • On 7 th May 2016, it was observed that the water flowing in the channel and the water samples collected at WM2B was visually clear. Besides, no surface runoff was observed. As advised by the Contractor, self-monitoring for the treated water in the wastewater treatment facilities was conducted and the effluent was visually clear on 7 May 2016. During the joint site inspection with ET, RE, IEC and Contractor on 12 May 2016, it was observed that the water in the upper stream of WM2B was visually clear. No adverse water impact was observed. Also, no site surface runoff was observed. It is considered that the exceedance on 7 May 2016 is not related to the construction activities of Contract 6. • According to the Daily Extract of Meteorological Observations from the Hong Kong Observatory, heavy rainfall was recorded on 21 May 2016. The flow rate of the river increased, sediment and cumulated silt at the river bed was stirred up during rain, resulting in turbid water in river channel. Apart from the disturbance of cumulated silt at the river bed during rain, it was observed that trails of muddy runoff from the public road surface into the existing channel under the rain. Thus, it is considered that the exceedance on 21 May 2016 is due to the heavy rainfall.
9 th , 10 th , 12 th , 21 th May 2016	WM3 (C2 and C6)	NTU and/or SS	 According to the site information respectively came from the Contractors of C6, major construction activities carried out on 9th, 10th, 12th, 21th May 2016 at upstream of WM3 was bored pile works. Contractor has carried out joint site inspection with EPD on 9 May 2016, and the wastewater treatment facility (SH-8) was inspected. As advised by the Contractor, no adverse comment was given by EPD. It was observed that the effluent that discharged in the temporary channel which connected to the discharge nullah and Ng Tung River was

Date of	Location	Exceeded Parameter	Cause of Water Quality Exceedance
Date of Exceedance	Location	Exceeded Parameter	visually clear. Besides, the water at the upstream of WM3 where the work area of C6 located was visually clear. Thus, it is considered that the exceedance on 9 May is unlikely due to the construction activities of the Contract 6. According to the Daily Extract of Meteorological Observations from the Hong Kong Observatory, heavy rainfall was recorded on 10 May 2016. The flow rate of the river increased, sediment and cumulated silt at the river bed was stirred up during rain, resulting in turbid water in river channel. It was observed that the water at WM3-C was turbid and the stirred up sediment may follow the flow direction to downstream at WM3 that create a cumulative effect on water turbidity. Thus, it is considered that the exceedance on 10 May 2016 was due to the heavy rainfall. During joint site inspection with RE, IEC and Contractor on 12 May 2016, the treated effluent discharged into temporary channel which connected to discharge nullah and Ng Tung River was inspected. It was observed that the effluent quality was visually clear. Also, no adverse water impact was observed at the upstream of the WM3 where the work area of C6 located. In our investigation, it is considered that the exceedance on 12 May is unlikely related to the construction activities of Contract 6. According to the Daily Extract of Meteorological Observations from the Hong Kong Observatory, heavy rainfall was recorded on 21 May 2016. The flow rate of the river increased, sediment and cumulated silt at the river bed was stirred up during rain, resulting in turbid water in river channel. Besides, under heavy rain, surface runoff from the nearby soil slopes into the river may make the water become more turbid. Thus, it is considered that the exceedance on 21 May 2016 was related to the heavy rainfall. According to the site information respectively came from the Contractors of C2, major construction activities carried out on 9th 10th 12th 21th May 2016 with RE, IEC and Contractor, it was observed that building for C2. According to the s
			rainfall was recorded on 10 May 2016. Water flow rate increased under the heavy rain and the sediment at the river bed was stirred up, resulting in turbid water. Thus, it is considered that the exceedance of turbidity on 10 May 2016 was due to the heavy rain and unlikely due to the construction activities of Contract 2.

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance
			• According to the Daily Extract of Meteorological Observations from the Hong Kong Observatory, heavy rainfall was recorded on 21 May 2016. The flow rate of the river increased, sediment and cumulated silt at the river bed was stirred up during rain, resulting in turbid water in river channel. Besides, under heavy rain, surface runoff from the nearby soil slopes into the river may make the water become more turbid. Thus, it is considered that the exceedance on 21 May 2016 was related to the heavy rainfall.

6.2.5 Five investigation reports for the exceedances which were under review by IEC in April 2016 are completed and cause of water quality exceedances were presented below.

Table 6-7 Summary of Water Quality Exceedance which were under review by IEC in April 2016

Date of		Exceeded	
Exceedance	Location	Parameter Parameter	Cause of Water Quality Exceedance
20 th ,21 th , 22 th April 2016	WM3 (C6 & C2)	NTU and/or SS	 According to the site information provided from the Contractor of C6 (CCKJV), the main construction activities carried out on 20, 21, 22 April 2016 at upstream of WM3 was bored pile works. Upon exceedance recorded on 20 April 2016 and during site inspection by RE, ET, IEC and Contractor on 21 April 2016, the effluent of the AquaSed (SH-8) was found to be turbid. As reported by CCKJV, the worker forgot to fill in the flocculent of the AquaSed(SH-8), resulting in turbid effluent. CCKJV had immediately replenished the flocculent and the effluent observed was clear. In our investigation, it is considered that the exceedances on 20, 21 April 2016 were related to the Contract. In order to enhance onsite management, CCKJV is advised to implement daily monitoring record on all AquaSeds under Contract 6. CCKJV has agreed to follow the advice and the preparation is in progress. According to the Daily Extract of Meteorological Observations from the Hong Kong Observatory, heavy rainfall was recorded on 22 April 2016. The flow rate of the river increased, sediment and cumulated silt at the river bed was stirred up during rain, resulting in slightly turbid water in river channel. It is considered that the exceedance on 22 April 2016 was unlikely due to the construction activities of the Contract. According to the site information provided from the Contractor of C2 (DHK), construction activities carried out from 20 to 22 April 2016 at admin building was building foundation works (rebar fixing and concreting) and no discharge was made. As advised by the Contractor, building foundation works was carried out at Admin Building and the site area was mostly hard paved. Temporary drainage system and water treatment system was properly implemented. From the photos taken on 20 and 21 April 2016, no adverse water impact was observed at the discharge nullah outside the site boundary. Thus, it is considered that the exceedances on 20 and 21 April are unlikely related to the construction <

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance
			 activities of C2. According to the Daily Extract of Meteorological Observations from the Hong Kong Observatory, heavy rainfall was recorded on 22 April 2016. During rain, the flow rate of the river increased, sediment and cumulated silt at the river bed was stirred up, resulting in slightly turbid water in river channel on 22 April 2016. It is considered that the exceedance on 22 April is due to the heavy rainfall.
11 th , 14 th , 20 th 22 th , 23 th , 25 th , 26 th April 2016	WM2B (C6)	NTU and/or SS	According to the site information as provided by C6, construction activities carried out at North Portal (upstream of WM2B) in the reporting period was included the piling and slope works. Daily self-monitoring has conducted by the Contractor to ensure effluent is fully compliance with the TM criteria. • According to the site record from the monitoring team on 11 April 2016, it was observed that the water flowing in the channel and the water samples collected at WM2B was visually clear. Since the water sampling was carried out at the bridge over the drainage channel at shallow water with water depth at around 0.02m, the water sample could not avoid inclusion of the loose sediment and debris. It is considered that the exceedance was unlikely related to the construction activities of the Contract. • According to the site record from the monitoring team on 14 April 2016, very shallow water was measured at WM2B and the water depth was around 0.02m. Also, water sampling was conducted under raining. Water flowing in the open channel was slightly turbid due to stir up of sediment and cumulated silt at the river bed. Besides, it was observed that trails of muddy runoff from the public road surface into the existing channel on 14 April 2016. It is considered that the exceedances were likely related to cumulated silt at the river bed and muddy runoff from the public road surface. • According to the site record from the monitoring team on 20 April 2016, very shallow water was measured at WM2B and the water depth was around 0.01-0.02m. It was observed that the water flowing in the channel and the water samples collected at WM2B was visually clear. Since the water sampling was carried out at the bridge over the drainage channel at shallow water, the water sample could not avoid inclusion of the loose sediment and debris. Thus, it is considered that the exceedance was unlikely related to the construction activities of the Contract. According to the site information provided from the CCKJV, construction activities carried

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance
			the site monitoring figures, there was no exceedances triggered on 27 April after the completion of the ditch. It is considered that the ditch had effectively collected the runoff due to the heavy rain. Also, from the site photos and during joint site inspection with RE, IEC, ET and Contractor on 5 May 2016, no runoff was observed after the completion of the drain ditch.

7 WASTE MANAGEMENT

7.1 GENERAL WASTE MANAGEMENT

7.1.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for each contract.

7.2 RECORDS OF WASTE QUANTITIES

- 7.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 7.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 7-1* and 7-2 and the Monthly Summary Waste Flow Table is shown in *Appendix L*. Whenever possible, materials were reused on-site as far as practicable.

Table 7-1 Summary of Quantities of Inert C&D Materials for the Project

	Cont	ract 2	Con	tract 3	Co	ntract 5	Con	tract 6	Co	ntract 7	Contra	ct SS C505	
Type of Waste	Qty.	Disposa l location	Qty.	Disposa l location	Qty ·	Disposa l location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Total Quantity
C&D Materials (Inert) (in '000m³)	77.5386		0.488	1	0		51.115		0.505		0.013	1	129.6596
Reused in this Contract (Inert) (in '000 m³)	0.1268		0.013		0		3.229		0		1.074		4.4428
Reused in other Contracts/ Projects (Inert) (in '000 m³)	38.9050	C6/ NENT# & other projects approved by the ER	0	ŀ	0		17.469	C5 & other projects approved by the ER	0		0	1	56.374
Disposal as Public Fill (Inert) (in '000 m³)	38.5068	Tuen Mun 38	0.475	Tuen Mun 38	0		30.417	Tuen Mun 38	0.505	Tuen Mun 38	0.013	TKO 137	69.9168

Remark #: The C&D materials were delivered to NENT for reuse by laying cover of the landfilling area.

Table 7-2 Summary of Quantities of C&D Wastes for the Project

	Cont	tract 2	Cont	ract 3	Cont	ract 5	Cont	tract 6	Cont	ract 7	Contract	SS C505	T-4-1
Type of Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location		Disposal location	Total Quantity
Recycled Metal ('000kg)#	44.8	-	0	-	0		0		0		1587.5818	Licensed collector	1632.382
Recycled Paper / Cardboard Packing ('000kg) #	0.4	-	0	-	0		0.221	Licensed collector	0		0		0.621
Recycled Plastic ('000kg) #	0		0	-	0		0		0		0		0
Chemical Wastes ('000kg)#	2.728	Licensed collector	0	-	0		0		0		0		2.728
General Refuses ('000m³)	0.1246	NENT	0.105	NENT	0.015	NENT	0.079	NENT	0		0.156	NENT	0.4796

Remark #: Unit of recycled metal, recycled paper/ cardboard packing, recycled plastic and chemical waste for Contract 3 was in ('000m³).

8 SITE INSPECTION

8.1 REQUIREMENTS

8.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

8.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

Contract 2

- 8.2.1 In the Reporting Period, joint site inspection for Contract 2 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 20, 27 May 2016. No non-compliance was noted.
- 8.2.2 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 8-1*.

Table 8-1 Site Observations for Contract 2

Date	Findings / Deficiencies	Follow-Up Status
6 May 2016	NRMM label is missing for the truck without TD registration was observed. The contractor should display the label properly before the truck is used. (North Portal)	NRMM label is displayed.
	• Turbidity water discharged into the water course was observed. The contractor explained that discharge of turbidity water is due to the wrong operating for the desilting facilities. The contractor was strongly request to provide proper training for the worker to avoid the incident. (Admin Building)	Trainings was provided and no muddy water discharge.
	The contractor was reminded to provide proper maintenance for the discharge water treatment facilities and make sure all discharge water should comply with the discharge license requirement.	Not required for reminder.
13 May 2016	• Soil and debris cumulated inside the temporary drainage system should be clean to maintain the discharge system in good condition.	Not required for reminder.
20 May 2016	No adverse environmental issue was observed.	NA
27 May 2016	No adverse environmental issue was observed.	NA

Contract 3

8.2.3 In the Reporting Period, joint site inspection for Contract 3 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **5**, **9**, **18**, **23**, **30** May **2016**. No non-compliance was noted.

8.2.4 The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 8-2*.

Table 8-2 Site Observations for Contract 3

Date	Findings / Deficiencies	Follow-Up Status	5	
5 May 2016	• Muddy trail was observed at site exit SA18. The Contractor should ensure no muddy trail present at the site exit and public access road to reduce dust generation.	 No muddy trail v observed at site SA and regular cleaning v performed. 		
9 May 2016	No adverse environmental issue was observed.	• NA		
18 May 2016	• Contractor was reminded to remove the stagnant water accumulated in the lifting eyes and to fill the lifting eyes with sand. (Location: FH9)	Not required reminder.	for	
23 May 2016	For those places commonly with stagnant water, the Contractor is reminded to remove stagnant water and provide record for mosquito control. (Portal AB8)	Not required reminder.	for	
	Garbage bucket should be cleaned up when it is full. Also, the Contractor is reminded to cover it up with tarpaulin. (Portal AB8)	Not required reminder.	for	
30 May 2016	Dark smoke emission from generator at Bridge J was observed. The Contractor should carry out maintenance work to avoid air impact.	Maintenance work carried out and no smoke emission the generator observed.	dark	

Contract 5

- 8.2.5 In the Reporting Period, joint site inspection for Contract 5 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 3, 10, 17, 24, 31 May 2016. No non-compliance was noted.
- 8.2.6 The findings / deficiencies of *Contract 5* that observed during the weekly site inspection are listed in *Table 8-3*.

Table 8-3 Site Observations for Contract 5

Date	Findings / Deficiencies	Follow-Up Status
3 May 2016	No adverse environmental issue was observed.	• NA
10 May 2016	No adverse environmental issue was observed.	• NA
17 May 2016	No adverse environmental issue was observed.	• NA
24 May 2016	• The Contractor should improve the housekeeping and waste sorting at the site area in LMH Road.	Construction wastes were removed from site and housekeeping was improved.

Date	Findings / Deficiencies	Follow-Up Status
31 May 2016	No adverse environmental issue was observed.	• NA

Contract 6

- 8.2.7 In the Reporting Period, joint site inspection for Contract 6 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 5, 12, 19, 26 May 2016. No non-compliance was noted.
- 8.2.8 The findings / deficiencies of *Contract 6* that observed during the weekly site inspection are listed in *Table 8-4*.

Table 8-4 Site Observations for Contract 6

Date	Findings / Deficiencies	Follow-Up Status
5 May 2016	• The Contractor was reminded to remove stagnant water on site after rainy days (Especially at Ping Yeung Interchange).	• NA
12 May 2016	• The Contractor was reminded to modify the discharge outfall point for treated water at the AquaSed (SH-15); and it was recommended to provide a diagram for wastewater treatment process.	 Not required for reminder Not required for reminder
	• It was reminded that stagnant water accumulated in drip tray should be removed as chemical waste especially after rain.	
19 May 2016	• Exposed slope was observed at Bridge D site area, the Contractor should cover the slope with tarpaulin to minimize the dust generation.	 Exposed surface has been covered up with tarpaulin sheet. Water spraying has been enhanced.
	• In bridge D, the Contractor should ensure that haul roads are damp and regular water spraying is implemented.	
26 May 2016	• Dark smoke emission from a power pack in Bridge D was observed, the Contractor should provide plant maintenance for the power pack to prevent smoke emission.	Exhaust filer of the power pack was replaced and no dark smoke emission was observed.
	 Stagnant water accumulated in a drip tray of a power pack in Bridge D was found, stagnant water should be cleaned up as chemical waste and to avoid mosquito breeding. 	Stagnant water in drip tray was removed.
	It was reminded that water spraying should be provided for rock breaking activity to minimize dust generation	Not required for reminder.

Contract SS C505

- 8.2.9 In the Reporting Period, joint site inspection for Contract SS C505 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **4**, **11**, **18**, **25** May **2016**. No non-compliance was noted.
- 8.2.10 The findings / deficiencies of *Contract SS C505* that observed during the weekly site inspection are listed in *Table 8-5*.

Table 8-5 Site Observations for Contract SS C505

Date	Findings / Deficiencies	Follow-Up Status
4 May 2016	The Contractor was reminded to remove the stagnant water on site after rainy days.	Not required for reminder.
11 May 2016	 Muddy sediment was observed at drainage channel near training center. The Contractor should clear the sediment to ensure the channel function properly. Chemical container without drip tray was observed. The Contractor should provide drip tray for the container to avoid land contamination. 	 Muddy sediment was removed from the drainage channel near training center. The chemical container without drip tray was removed from site.
18 May 2016	 Water spraying frequency should be increased for the haul road to reduce dust impact. Proper designated area should be assigned for storage chemic 	Not required for reminder.Not required for reminder.
25 May 2016	• Stagnant water was observed at Bridge 5. The Contractor should remove the stagnant water to prevent mosquito breeding.	• Stagnant water at Bridge 5 was removed.

Contract 7

- 8.2.11 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 3, 10, 17, 24, 31 May 2016. No non-compliance was noted.
- 8.2.12 The findings / deficiencies of *Contract 7* that observed during the weekly site inspection are listed in *Table 8-6*.

Table 8-6 Site Observations for Contract 7

Date	Findings / Deficiencies	Follow-Up Status
3 May 2016	 Stagnant water accumulated in drip tray was observed, the Contractor should clean away the stagnant water. Fallen chemical container without drip tray was found, the Contractor should provide drip tray for all chemical container. 	 The stagnant water was removed from the drip tray. The chemical container was removed from site.
10 May 2016	• No adverse environmental issue was observed.	NA
17 May 2016	• No adverse environmental issue was observed.	NA
24 May 2016	• Smoke emission from an air compressor was observed, the Contractor should	Maintenance of the air compressor was carried

Date	Findings / Deficiencies	Follow-Up Status
	provide plant maintenance to avoid smoke emission.	out.
31 May 2016	 No adverse environmental issue was observed. 	NA

8.2.13 Overall, general housekeeping such as daily site tidiness and cleanliness should be maintained for all Contracts. Furthermore, the Contractors were reminded to implement Waste Management Plan of the Project.

Other Contracts

8.2.14 Since Contract 4 has not yet commenced, no site inspection were performed.

9 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

9.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

9.1.1 In the Reporting Period, no summons and prosecution under the EM&A Programme was lodged for Contracts 2, 3, 5, 6, 7 and Contract SS C505. However, a total of three (3) documented environmental complaints were received in the reporting month regarding to noise, dust and water issues. All complaints are being investigated. Three (3) documented environmental complaint investigations which were received in April 2016 were completed and the investigation reports were reviewed by IEC. The detail of the complaints and the investigation results are presented below. Two (2) documented environmental complaints received in April 2016 are still under review and the result of the investigation will be presented in the next monthly report.

Investigation Result for the Documented Complaints received by CEDD on 22 April 2016

- 9.1.2 On 22 April 2016, CEDD received a complaint regarding to the direct discharge of wastewater into the manhole (drainage hole).
- 9.1.3 During site inspection with representatives of DSD, CEDD and AECOM on 26 April 2016, it was observed that the sedimentation tank was removed from site
- 9.1.4 According to the photo record, there was a sedimentation tank connected with the concerned manhole (drainage hole). As advised by the Contractor of C6 (CCKJV), the sedimentation tank was idled and would only be used as a spare tank for emergency. All wastewater from that site area was stored in temporary pit and diverted to treat in wastewater treatment facilities including sedimentation tank and AquaSed. After that, all treated effluent was diverted to the drainage hole and then the drainage outlet for discharge. Therefore, there is no discharge of wastewater into the drainage hole.
- 9.1.5 On 23 May 2016, ET carried out site inspection with the Contractor and reviewed the wastewater treatment method above. One more set of wastewater treatment facilities was inputted. The latest wastewater treatment facilities location were shown in Figure 3. The effluent finally diverted to the discharge outlet then into the river. The water quality at the Ng Tung River was visually clear.
- 9.1.6 It is considered that the above complaint is not valid, nevertheless, CCKJV is still reminded to follow the mitigation measures as recommended in the EM&A Manual. The ET will continue inspect the environmental performance of the construction site and ensure all activities comply with the relevant environmental contractual requirement.

Investigation Result for the Documented Complaints received by CEDD on 22 April 2016

- 9.1.7 On 20 April 2016, CEDD received a complaint from the Sha Tau Kok District Rural Committee expressing their concerns with respect to discharge of suspected untreated muddy water from the construction sites at Wo Keng Shan Road and Sha Tau Kok Road into the existing river channel. The discharge of muddy water causing water pollution and accumulation of silt and sediment in the river channel which affecting the livelihood of the nearby resident.
- 9.1.8 Besides, the Contractor is pumping water from the exiting river channel near Ping Yuen Road for construction purpose without prior notice to villager and discharging suspected untreated muddy water into the river channel. It seriously affects the villagers especially for those making life on agriculture. Moreover, the construction causing loss of groundwater source which highly affecting the livelihood of the villagers who making life on farming.
- 9.1.9 A joint site inspection amongst the RE, Contractor of C6 (CCKJV), IEC and ET was carried out on 25 April 2016 for the complaint investigation. The inspected areas covered all complaint locations which included Administrative Building under Contract 2 and Site Office area under Contract 6 in Wo Keng Shan Road as well as the open trench and river channel adjacent to Sha Tau Kok Road. Moreover, the construction site in Ping Yuen which under Contract 6 and the adjacent Ping Yuen River was also inspected. EPD, CEDD and DSD carried out site inspections on 8, 18, 21, 29 April 2016 and no adverse comment was given.
- 9.1.10 Wo Keng Shan Road
 - <u>Complaint 1: Muddy water discharged to drain pit and existing river channel at Administrative</u> Building
 - As advised by Contractor of C2 (DHK), the recent construction activities carried out in admin building included building foundation works such as rebar fixing and concreting. The amount of

wastewater being generated from the abovementioned construction activities is limited and discharge would not be made every day. The main wastewater generated from the site would be runoff from rain and wheel washing bay. According to the ET's weekly site inspection photos, the water in the concerned drain channel was visually clear and no water impact was observed in April 2016. As the concerned drain channel and drain pit is not solely for collecting the effluent from the construction site but also the water flowing from upstream, the contaminated water on the drain channel may be flown from upstream. As advised by DHK, the drain pit connecting the communal drain is cleaned regularly to ensure the nullah is clean.

- 9.1.11 During site inspection on 25 April 2016, it was observed that the work area is mostly concrete paved to minimize muddy runoff. Wastewater treatment facilities including sump pit and series of sedimentation tank and WetSep was implemented and all wastewater was passing through the wastewater treatment facilities before discharge. The treated effluent was clear. The Contractor has conducted daily checking of effluent to ensure the quality of the effluent before discharge. In our investigation, it is considered that this complaint is unlikely related to the Contract.
- 9.1.12 Complaint 2: Muddy water discharge from Site Office Area to existing river channel

 There is no construction activities carried out at Site Office Area but it was observed that vehicles with mud on wheels getting in and out of the sites frequently. As normal site practice, the Contractor would carry out daily clean up to remove the loose materials and mud on road surface within the Site Office area. During our inspection on 25 April 2016, the water of the river channel outside Site Office area was visually clear.
- 9.1.13 For the construction site under Contract 6 behind the Site Office area, the recent construction activities carried out was bored piling. As water mitigation measures, CCKJV has been set up a temporary drainage channel to divert wastewater from bored pile work and wheel washing bay to the wastewater treatment facilities and they are under normal operation. The effluent from wastewater treatment facilities was mainly recirculated in the wheel washing basin and bored pile work and the excess water would be discharged to the nullah which connected to Ng Tung River. CCKJV would check the performance of discharge water every day to ensure it complied with the relevant standard. According to the daily monitoring records from CCKJV, the treated effluent was clear on 5, 6, 7, 11, 12 April 2016.
- 9.1.14 During the inspection on 25 April 2016 and ET's weekly site inspection photos, ET has inspected the treated effluent discharged into nullah which connected to Ng Tung River, though some silt cumulated at nullah bed was observed, the water flowing in the nullah was visually clear. In our investigation, it is considered that this complaint is unlikely related to the Contract.
- 9.1.15 Complaint 3: Contaminated river channel with muddy water from the open trench of Sha Tau Kok Road

According to the complaint photo, the suspected contaminated river channel with muddy water was connected to Sha Tau Kok Road which collecting all the surface runoff from Sha Tau Kok Road through an open trench. As regular public road cleaning is providing on Sha Tau Kok Road, runoff from the public road into the gully may occur. Silt and sediment cumulated on the open trench may make the water in river turbid especially under raining.

- 9.1.16 During the inspection on 25 April 2016, no muddy was observed at the river channel and the silt and sediment at the open trench was clear. In our investigation, it is considered that this complaint is unlikely related to the Contract.
- 9.1.17 Ping Yuen
 - As advised by CCKJV, the recent construction activities carried out at Ping Yuen was mainly bored piling. The wastewater generated from piling was recirculated and discharge could be made when water overflow from the AquaSed. As recently reported by CCKJV, since too much silt accumulated inside the sedimentation tank, the quality of effluent was not desirable and some turbid effluent was discharged into Ping Yuen River. CCKJV has been increased the desilting frequency of the AquaSed and sedimentation tanks to 3 times per week and adjusted the chemical dosage for better treatment result.
- 9.1.18 To minimize the runoff flowing out of the site, concrete block and sand bag as a temporary bund was set up near the piling works area which besides Ping Yuen River of Bridge D. CCKJV advised that the construction of concrete bund will be continuously constructed along the piling area.
- 9.1.19 During the site inspection on 25 April 2016, it was observed that the water quality near the site area of Ping Yuen River was turbid even though no discharge was made. Inspection was carried out at upstream of the river and turbid water was observed but the source was unknown. It is

considered that the quality of water in Ping Yuen River is not only affected by the construction activities but also the external factor such as rainfall and possible domestic discharge from the villager. Also, it was observed that clean runoff water from the nearby slopes which are out of the site area was collected by the drainage pipes and diverted to the river channel for discharge. In our investigation, this complaint is unlikely related to the Contract. And CCKJV is advised to remove all idled drainage pipes.

9.1.20 All of the above complaints are unlikely related to the Contract. Nevertheless, CCKJV is still reminded to follow the mitigation measures as recommended in the EM&A Manual as far as practicable to minimize the impact and nuisance to the public. Mitigation measures such as carrying out regular desilting of AquaSed and sedimentation tanks, applying proper dosage of chemical for wastewater treatment should be maintained. The ET will continue inspect the environmental performance of the construction site and ensure all activities comply with the relevant environmental contractual requirement.

Investigation Result for the Documented Complaints received by CEDD on 22 April 2016

- 9.1.21 On 22 April 2016, CEDD received a complaint from the Sha Tau Kok District Rural Committee expressing their concerns with respect to pumping water from the exiting river channel near Ping Yuen Road for construction purpose without prior notice to villager and discharging suspected untreated muddy water into the river channel. It seriously affects the villagers especially for those making life on agriculture. Moreover, the construction causing loss of groundwater source which highly affecting the livelihood of the villagers who making life on farming.
- 9.1.22 A joint site inspection amongst the RE, Contractor of C6 (CCKJV), IEC and ET was carried out on 25 April 2016 for the complaint investigation. The inspected areas covered all complaint locations which included the construction site in Ping Yuen which under Contract 6 and the adjacent Ping Yuen River. EPD, CEDD and DSD has carried out site inspection on 8, 18 and 29 April 2016 and no adverse comment was given.
- 9.1.23 As advised by CCKJV, the recent construction activities carried out at Ping Yuen was mainly bored piling. Water was extracted from the river channel for dust mitigation control measures. The wastewater generated from piling was recirculated and discharge could be made when water overflow from the AquaSed. As recently reported by CCKJV, since too much silt accumulated inside the sedimentation tank, the quality of effluent was not desirable and some turbid effluent was discharged into Ping Yuen River. CCKJV has been increased the desilting frequency of the AquaSed and sedimentation tanks to 3 times per week and adjusted the chemical dosage for better treatment result.
- 9.1.24 To minimize the runoff flowing out of the site, concrete block and sand bag as a temporary bund was set up near the piling works area which besides Ping Yuen River of Bridge D. CCKJV advised that the construction of concrete bund will be continuously constructed along the piling area.
- 9.1.25 During the site inspection on 25 April 2016, it was observed that the water quality near the site area of Ping Yuen was turbid even though no discharge was made. Inspection was carried out at upstream of the river and turbid water was observed but the source was unknown. It is considered that the quality of water in Ping Yuen River is not only affected by the construction activities but also the external factor such as rainfall and possible domestic discharge from the villager. Also, it was observed that clean runoff water from the nearby slopes which are out of the site area was collected by the drainage pipes and diverted to the river channel for discharge. CCKJV is advised to remove all idled drainage pipes.
- 9.1.26 In our investigation, it is considered that the complaint is unlikely due to the Contract. However, CCKJV is still reminded to follow the mitigation measures as recommended in the EM&A Manual as far as practicable to minimize the impact and nuisance to the public. Mitigation measures such as carrying out regular desilting of AquaSed and sedimentation tanks should be implemented. The ET will continue inspect the environmental performance of the construction site and ensure all activities comply with the relevant environmental contractual requirement.

Investigation Result for the Documented Complaints received by 1823 on 28 April 2016

9.1.27 A complaint was received on 28 April 2016 from 1823 regarding to the suspected muddy water discharged from the construction sites under Contract 6 affected the growth of crops. This complaint is under review and the result will be presented in the next monthly report.

Investigation Result for the Documented Complaints received by 1823 on 21 April 2016

9.1.28 A complaint was received from 1823 on 21 April 2016 and passed to CEDD and EPD. There are two concerns. Firstly, it is suspected that dump trucks were not washed in wheel washing facilities before leaving the site and the site was not carried out water spraying. Hence, these suspected concerns lead to dust nuisance to the nearby farmlands. Secondly, it is suspected that the Contractor discharged wastewater directly into the storm drain and Ng Tung River, affecting the residents and farmers of Tai Tong Wu. This investigation report is still under review and the result will be presented in the next monthly report.

Investigation Result for the Documented Complaints received by 1823 on 28 May 2016

9.1.29 A complaint was received from 1823 on 28 May 2016, regarding to the mud found on Sha Tau Kok, Wo Keng Shan Road was suspected from the construction site. This investigation report is still under review and the result will be presented in the next monthly report.

Investigation Result for the Documented Complaints received by CEDD on 26 May 2016

9.1.30 A complaint was received from CEDD on 26 May 2016, regarding to the noise nuisance from the construction site of Contract 2 (North Portal). Loi Tung Villagers complained that noise was made at midnight from the construction site. Also, early in the morning at 5, dump truck started working in the construction site, making noise thus affecting the daily lives of villagers. This complaint is still under investigation the result will be presented in the next monthly report

Investigation Result for the Documented Complaints received by 1823 on 31 May 2016

- 9.1.31 A complaint was received from 1823 on 31 May 2016, regarding to water spraying over dump trucks was suspected to be carried out outside site area. The above action resulted in muddy water on Sha Tau Kok Road Wo Hang Ma Mei Section and affected other road users. This complaint is still under review and the result will be presented in the next monthly report.
- 9.1.32 The statistical summary table of environmental complaint is presented in *Tables 9-1*, *9-2* and *9-3*.

Table 9-1 Statistical Summary of Environmental Complaints

Domontin a Doni o d	Comtract No	Environmental Complaint Statistics		
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature
19 May 2014 – 30 April 2016	Contract 2	0	14	(6) Water Quality(6) Dust(2) Noise
06 Nov 2013 – 30 April 2016	Contract 3	0	4	(1) Dust(2) Water quality(1) Noise
16 Aug 2013 – 30 April 2016	Contract 5	0	2	• (2) Dust
16 Aug 2013 – 30 April 2016	Contract 6	0	13	(11) Water Quality(2) Dust
15 Feb 2016 – 30 April 2016	Contract 7	0	0	N/A

Reporting Period	C44 N	Environmental Complaint Statistics		
	Contract No	Frequency	Cumulative	Complaint Nature
16 Aug 2013 – 30 April 2016	SS C505	0	0	N/A
1 – 31 May 2016	Contract 2	3	17	(7)Water Quality(7) Dust(3) Noise
	Contract 3	0	4	(1) Dust(2) Water quality(1) Noise
ĺ	Contract 5	0	2	• (2) Dust
	Contract 6	1	14	• (11) Water Quality • (3) Dust
	Contract 7	0	0	N/A
,	SS C505	0	0	N/A

 Table 9-2
 Statistical Summary of Environmental Summons

D (' D ' 1	C 4 AN	Environmental Summons Statistics			
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature	
19 May 2014 – 30 April 2016	Contract 2	0	0	NA	
06 Nov 2013 – 30 April 2016	Contract 3	0	0	NA	
16 Aug 2013 – 30 April 2016	Contract 5	0	0	NA	
16 Aug 2013 – 30 April 2016	Contract 6	0	0	NA	
15 Feb 2016 – 30 April 2016	Contract 7	0	0	NA	
16 Aug 2013 – 30 April 2016	SS C505	0	0	NA	
	Contract 2	0	0	NA	
	Contract 3	0	0	NA	
1 – 31 May 2016	Contract 5	0	0	NA	
	Contract 6	0	0	NA	
	Contract 7	0	0	NA	
	SS C505	0	0	NA	

 Table 9-3
 Statistical Summary of Environmental Prosecution

Domontino Dominal	Comtract No	Environmental Prosecution Statistics			
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature	
19 May 2014 – 30 April 2016	Contract 2	0	0	NA	
06 Nov 2013 – 30 April 2016	Contract 3	0	0	NA	
16 Aug 2013 – 30 April 2016	Contract 5	0	0	NA	
16 Aug 2013 – 30 April 2016	Contract 6	0	0	NA	
15 Feb 2016 – 30 April 2016	Contract 7	0	0	NA	
16 Aug 2013 – 30 April 2016	SS C505	0	0	NA	
1 – 31 May 2016	Contract 2	0	0	NA	

Contract 3	0	0	NA
Contract 5	0	0	NA
Contract 6	0	0	NA
Contract 7	0	0	NA
SS C505	0	0	NA

The Other Contracts

9.1.33 Since the construction works at the Contract 4 has not yet commenced, no environmental complaint, summons and prosecution under the EM&A Programme are registered in the Reporting Period.

10 IMPLEMENTATION STATUS OF MITIGATION MEASURES

10.1 GENERAL REQUIREMENTS

- 10.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented by Contracts 2, 3, 5, 6, 7 and Contract SS C505 in this Reporting Period are summarized in *Table 10-1*.

Table 10-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures				
Water Quality	• Wastewater to be treated by the wastewater treatment facilities i.e. sedimentation tank or similar facility before discharge.				
Air Quality	 Maintain damp / wet surface on access road Low vehicular speed within the works areas. All vehicles must use wheel washing facility before off site Sprayed water during breaking works A cleaning truck was regularly performed on the public road to prevent fugitive dust emission 				
Noise	 Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday. Keep good maintenance of plants Place noisy plants away from residence or school Provide noise barriers or hoarding to enclose the noisy plants or works Shut down the plants when not in used. 				
Waste and Chemical Management	 On-site sorting prior to disposal Follow requirements and procedures of the "Trip-ticket System" 				
General	The site was generally kept tidy and clean.				

10.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

10.2.1 Construction activities as undertaken in the coming month for the Project lists below:

Contract 2

Mid-Vent Portal	•	Tube excavation (NB+SB) Adit invert slab
	•	Ventilation building superstructure
North Portal	•	Retaining walls and slope stabilization Northbound top heading excavation and tunnel enlargement Retaining walls and slope stabilization
South Portal	•	Southbound and Northbound D&B excavation Building works superstructure
Admin Building	•	Building works foundation & superstructure

Contract 3

- Cable detection and trial trenches
- Filling works at Tong Hang East
- Storm Drains Laying
- Noise barrier construction

- Pier / Pier Table construction
- Pile cap works
- Portal beam construction
- Pre-drilling works and piling works for viaduct
- Pre-drilling works for noise barrier and piling works for noise barrier
- Retaining Wall construction
- Road works
- Sewer works
- Slope works
- Socket H-pile installation
- Tree felling works
- Utilities duct laying
- Viaduct segment erection
- Water works

Contract 5

- Testing and commissioning of rising main (VO061) at LMH road
- Bituminous laying at existing LMH road.
- Brick laying at footpath of LMH road
- Road works (kerb and bituminous laying) at existing LMH road
- Irrigation system at existing LMH Road
- Installation of underground utilities at existing LMH road
- Planting works at proposed & existing LMH road

Contract 6

- Site Clearance
- Slope Works
- Site Accesses Construction
- Ground Investigation Works
- Soil Nail
- Bored Piling
- Pile Cap Construction
- Tunnel Excavation
- Sewage Treatment Plant Construction

Contract 7

- Ground Investigation Works for Bridge A and E
- Piling Works for Bridge A to E
- Pile cap construction for Bridge B, C, D

Contract SS C505

- General Site Setup
- CLP temporally sub-station works
- Building no. 5 and 9 construction
- Tower Crane TC10 Construction
- H-pile works and load test
- Disassembly of crawler crane
- Grouting and full core to completed bored piles
- Underground drainage works
- Erection of Welfare Shelter
- Prototype "A" Construction works
- Prototype "B" footing construction
- Formwork and falsework for PTB's slap construction
- Pile cap construction for PTB

- Tower Crane Construction
- Pile Cap construction for building number 4, 6 and 7
- Bridge construction works including construction of bridge column, retaining wall, pile cap

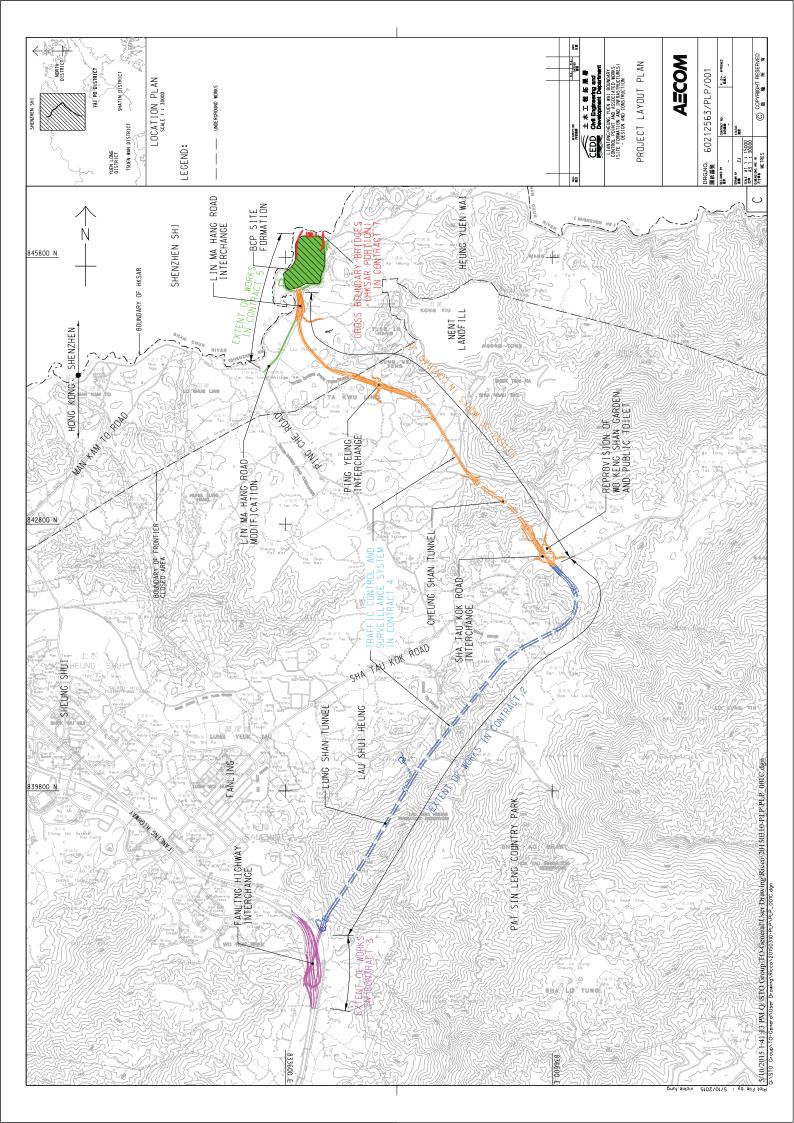
10.3 KEY ISSUES FOR THE COMING MONTH

- 10.3.1 Key issues to be considered in the coming month for Contracts 2, 3, 5, 6, 7 and SS C505 include:
 - Implementation of control measures for rainstorm;
 - Regular clearance of stagnant water during wet season;
 - Implementation of dust suppression measures at all times;
 - Potential wastewater quality impact due to surface runoff;
 - Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
 - Disposal of empty engine oil containers within site area;
 - Ensure dust suppression measures are implemented properly;
 - Sediment catch-pits and silt removal facilities should be regularly maintained;
 - Management of chemical wastes;
 - Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
 - Follow-up of improvement on general waste management issues; and
 - Implementation of construction noise preventative control measures
- 10.3.2 Contract 4 has not yet commenced and no environmental issue is presented.

11 CONCLUSIONS AND RECOMMENDATIONS

11.1 CONCLUSIONS

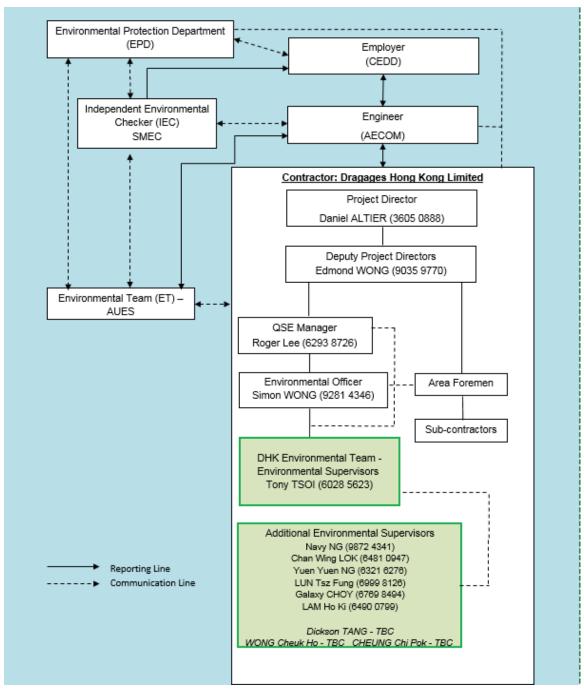
- 11.1.1 This is the **34**th monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **31 May 2016**.
- For air quality monitoring, no 1-hour and 24-hour TSP monitoring results triggered the Action or Limit Levels were recorded. No NOEs or the associated corrective actions were therefore issued.
- 11.1.3 No noise complaint (which is an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in the Reporting Period. No NOEs or the associated corrective actions were therefore issued.
- 11.1.4 For water quality monitoring, a total of twenty-seven (27) Action/ Limit Levels (AL/LL) exceedances, namely fifteen (15) LL exceedances of turbidity and twelve (12) AL/LL exceedances of Suspended Solids. The investigations for the cause of exceedances have been conducted by the ET and the associated investigation reports were submitted to relevant parties
- 11.1.5 No environmental summons or successful prosecutions were recorded in the Reporting Period.
- In this Reporting Period, a total three (3) documented environmental complaint was received in the reporting month regarding to water, dust and noise issue. Upon receipt of the complaints, RE, IEC and ET with the relevant Contractors has immediately undertaken investigation. In the Reporting Period, all complaints of investigation are not yet completed and ongoing.
- During the Reporting Period, weekly joint site inspection by the RE, IEC, ET with the relevant Main-contractor were carried out for Contracts 2, 3, 5, 6, 7 and SS C505 in accordance with the EM&A Manual stipulation. No non-compliance observed during the site inspection.


11.2 RECOMMENDATIONS

- 11.2.1 As wet season has come, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River or public area would be the key issue. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River. Moreover, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- 11.2.2 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.
- Furthermore, daily cleaning and weekly tidiness shall be properly performed and maintained. In addition, mosquito control should be kept to prevent mosquito breeding on site.

Appendix A

Layout plan of the Project



Appendix B

Organization Chart

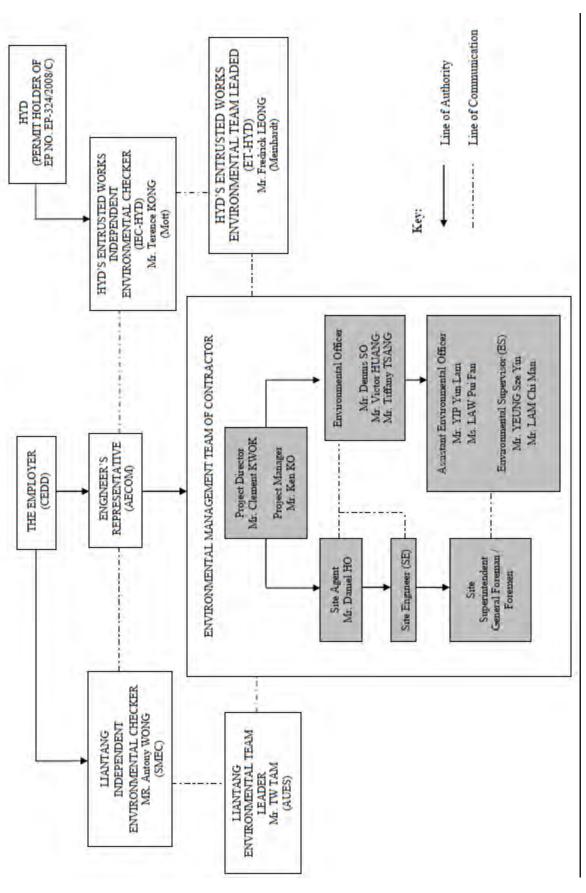
Environmental Management Organization for Contract 2 - (CV/2012/08)

Contact Details of Key Personnel for Contract 2 - CV/2012/08

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Gregory Lo	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
DHK	Project Director	Daniel Altier	2171 3004	2171 3299
DHK	Deputy Project Manager	Edmond Wong	2171 3004	2171 3299
DHK	QSE Manager	Roger Lee	6293 8726	2171 3299
DHK	Environmental Officer	Simon Wong	2171 3004	2171 3299
DHK	Environmental Supervisor	Tony Tsoi	6028 5623	2171 3299
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:

CEDD (Employer) - Civil Engineering and Development Department


AECOM (Engineer) – AECOM Asia Co. Ltd.

DHK(Main Contractor) –Dragages Hong Kong Ltd.

 $SMEC\left(IEC\right)-SMEC\ Asia\ Limited$

AUES (ET) – Action-United Environmental Services & Consulting

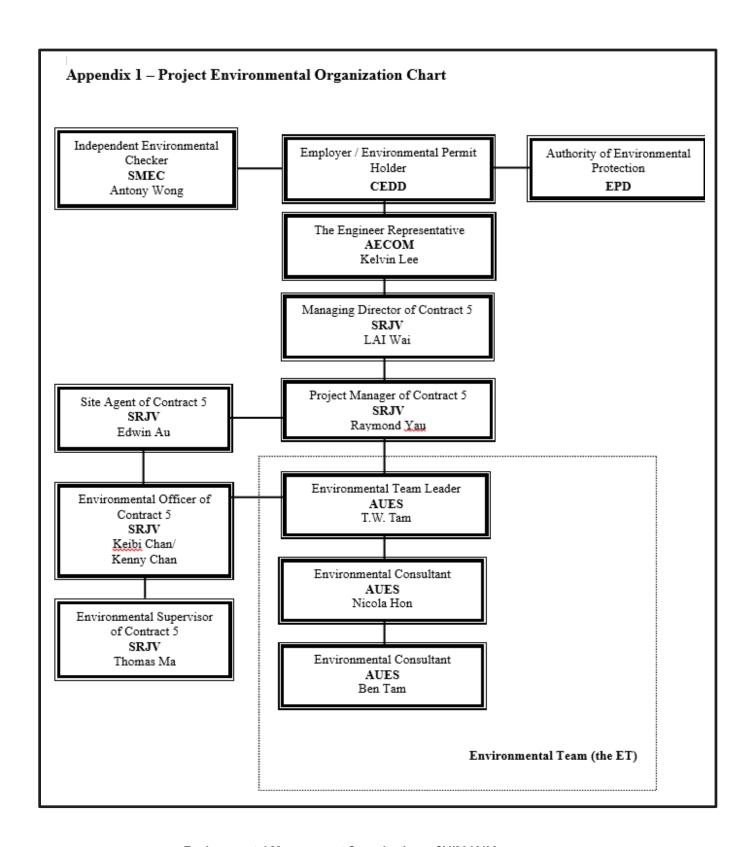
Environmental Management Organization for Contract 3 - CV/2012/09

Contact Details of Key Personnel for Contract 3 - CV/2012/09

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Chun Wo	Project Director	Clement Kwok	3758 8735	2638 7077
Chun Wo	Project Manager	Ken Ko	2638 6136	2638 7077
Chun Wo	Site Agent	Daniel Ho	2638 6144	2638 7077
Chun Wo	Environmental Officer	Victor Huang Tiffany Tsang Dennis So	2638 6115	2638 7077
Chun Wo	Assistant Environmental Officer	Yip Yun Lam Law Pui Fan	2638 6125	2638 7077
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:

CEDD (Employer) - Civil Engineering and Development Department


AECOM (Engineer) – AECOM Asia Co. Ltd.

Chun Wo (Main Contractor) - Chun Wo Construction Ltd.

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

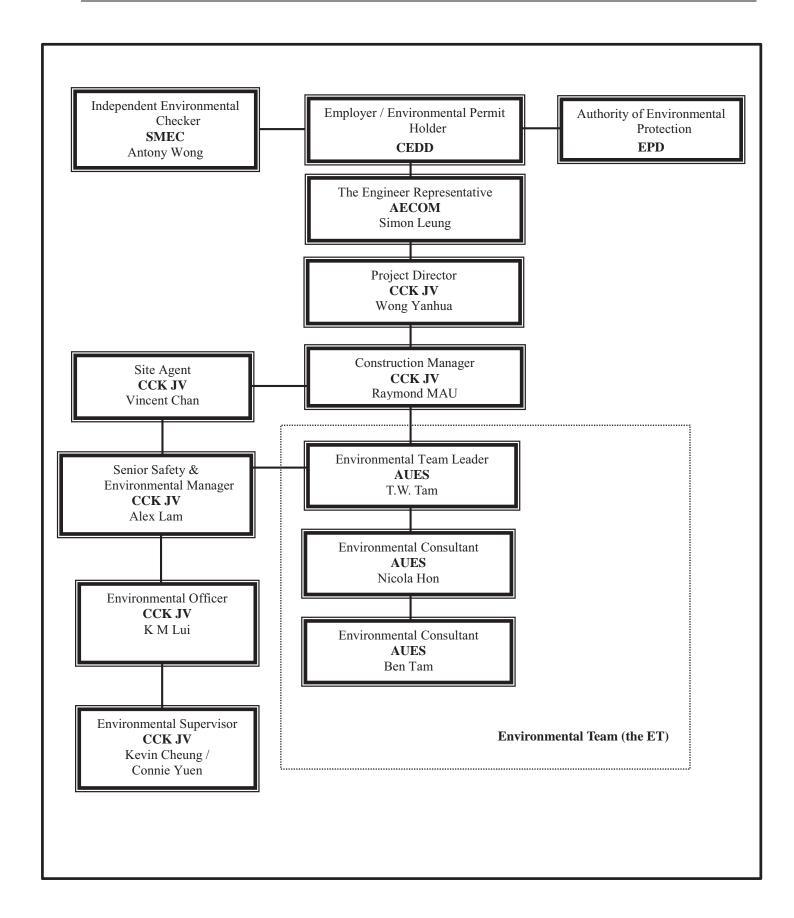
Environmental Management Organization – CV/2013/03

Contact Details of Key Personnel for Contract 5 - CV/2013/03

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Kelvin Lee	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
SRJV	Project Director	LAI Wai		2403 1162
SRJV	Contract Manager	Raymond Yu	9041 1620	2403 1162
SRJV	Project Manager	Aaron Mak	9464 7095	2403 1162
SRJV	Site Agent	Edwin Au	9208 7329	2403 1162
SRJV	Environmental Officer	Chan Ng jhon-keibi / Kenny Chan	6090 0183	2403 1162
SRJV	Environmental Supervisor	Thomas Ma	-	2403 1162
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:

CEDD (Employer) - Civil Engineering and Development Department


AECOM (Engineer) – AECOM Asia Co. Ltd.

SRJV (Main Contractor) - Sang Hing Civil - Richwell Machinery JV

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

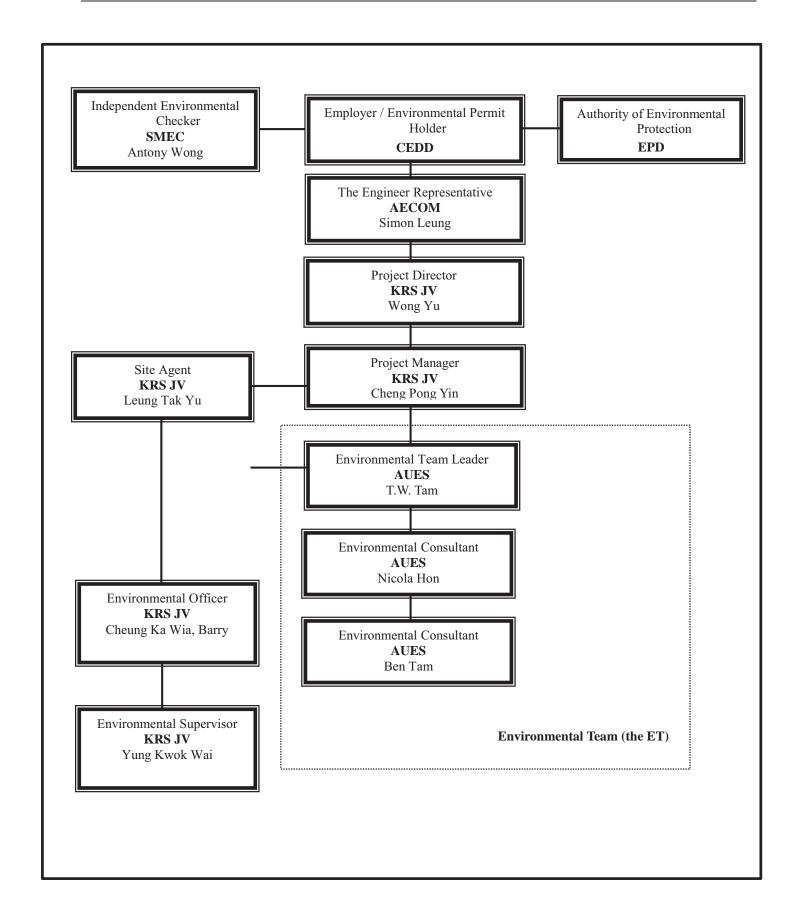
Environmental Management Organization – CV/2013/08

Contact Details of Key Personnel for Contract 6 - CV/2013/03

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
CCK JV	Project Director	Wang Yanhua	6190 4212	
CCK JV	Construction Manager	Raymond Mau Sai-Wai	9011 5340	
CCK JV	Site Agent	Vincent Chan	9655 9404	
CCK JV	Senior Safety & Environmental Manager	Alex Lam	5547 0181	
CCK JV	Environmental Officer	K M Lui	51138223	
CCK JV	Environmental Supervisor	Kevin Cheung/ Connie Yeun	6316 6931 6117 1344	
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Legend:

CEDD (Employer) - Civil Engineering and Development Department


AECOM (Engineer) – AECOM Asia Co. Ltd.

CCK JV (Main Contractor) – CRBE-CEC-Kaden Joint Venture

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

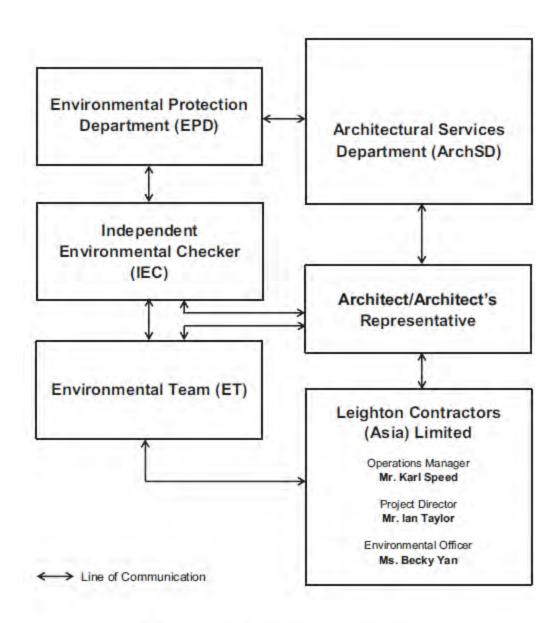
Environmental Management Organization –NE/2014/03

Contact Details of Key Personnel for Contract 7 – NE/2014/03

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
CCK JV	Project Director	Wong Yu	2682 6691	2682 2783
CCK JV	Project Manager	Cheng Pong Yin	9023 4821	2682 2783
CCK JV	Site Agent	Leung Tak Yu	9705 7536	2682 2783
CCK JV	Environmental Officer	Cheung Ka Wia, Barry	6117 2339	2682 2783
CCK JV	Environmental Supervisor	Yung Kwok Wai	6592 3084	2682 2783
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Legend:

CEDD (Employer) - Civil Engineering and Development Department


AECOM (Engineer) – AECOM Asia Co. Ltd.

KRS JV (Main Contractor) -Kwan On-Richwell-SCG Joint Venture

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organigram

Environmental Management Organization for Contract SS C505

Contact Details of Key Personnel for Contract SS C505

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
ArchSD	Works agent for the Development Bureau (DEVB)	Mr. William Cheng	2867 3904	2804 6805
Ronald Lu & Partners	Architect/ Architect's Representative	Mr. Justin Cheung	3189 9272	2834 5442
SMEC	Independent Environmental Checker	Mr. Antony Wong	3995 8120	3995 8101
Leighton	Operation Manager	Mr. Karl Speed	2823 1433	25298784
Leighton	Project Director	Mr. Ian Taylor	2858 1519	2858 1899
Leighton	Environmental Officer	Ms. Becky Yan	3973 1069	-
Leighton	Assistant Environmental Officer	Ms. Penny Yiu	3973 0818	-
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Mr. Ben Tam	2959 6059	2959 6079

Legend:

ArchSD(Project Proponent) – Architectural Services Department

Ronald Lu & Partners (Architect/ Architect's Representative) –Ronald Lu & Partners (Hong Kong) Ltd

Leighton (Main Contractor) – Leighton Contractors (Asia) Limited

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Appendix C

3-month rolling construction program

Contract 2

CEDD Contract No: CV/2012/08

Main Contractor: Dragages Hong Kong Ltd

Tentative Three Months (May, June and July 2016) Construction Rolling Progam

Item	Construction Activites							
	Admin Bldg - Building foundations and superstructure works							
2	Mid Vent Portal - Adit invert slab							
	Mid Vent Portal - Adit lining works							
	Mid Vent Portal - Traditional tunnel excavation							
	Mid Vent Portal - Ventilation building superstructure works							
	North Portal - N/B tunnel - Traditional tunnel excavation							
	North Portal - S/B tunnel - TBM tunnel excavation							
	North Portal - S/B tunnel - Tunnel enlargement							
	North Portal - Retaining walls and slope stabilizations							
	South Portal - Traditional tunnel excavation							
11	South Portal - Ventilation Building superstructure works							

Contract 3

CEDD Contract No: CV/2012/09

Main Contractor: Chun Wo Construction Ltd

Tentative Three Months (June, July and August 2016) Construction Rolling Progam

Item	Construction Activites					
1	Cable detection and trial trenches					
2	Filling works at Tong Hang East					
3	Storm Drains Laying					
4	Noise barrier construction					
5	Pier / Pier Table construction					
6	Pile cap works					
7	Portal beam construction					
8	Pre-drilling works and piling works for viaduct					
9	Pre-drilling works for noise barrier and piling works for noise barrier					
10	Retaining Wall construction					
11	Road works					
12	Sewer works					
13	Slope works					
14	Socket H-pile installation					
15	Tree felling works					
16	Utilities duct laying					
17	Viaduct segment erection					
18	Water works					

Contract 5

CEDD Contract No: CV/2013/03

Main Contractor: Sang Hing Civil-Richwell Machinery Joint Venture

Tentative Three Months (June, July, August 2016) Construction Rolling Progam

Item									
1	Construction Works at Lin Ma Hang Road between Chaninage 0 to 190								
2	Landscape Works								

Contract 6

CEDD Contract No: CV/2013/08

Main Contractor: CRBE-CEC-Kaden Joint Venture

Tentative Three Months (June, July and August 2016) Construction Rolling Progam

Item	Construction Activites
1	Slope Works
2	Bored Piling
3	Abutment and Pier Construction
4	Sewage Treatment Plant Construction
5	Road Works
6	Tunnel Works

Contract 7

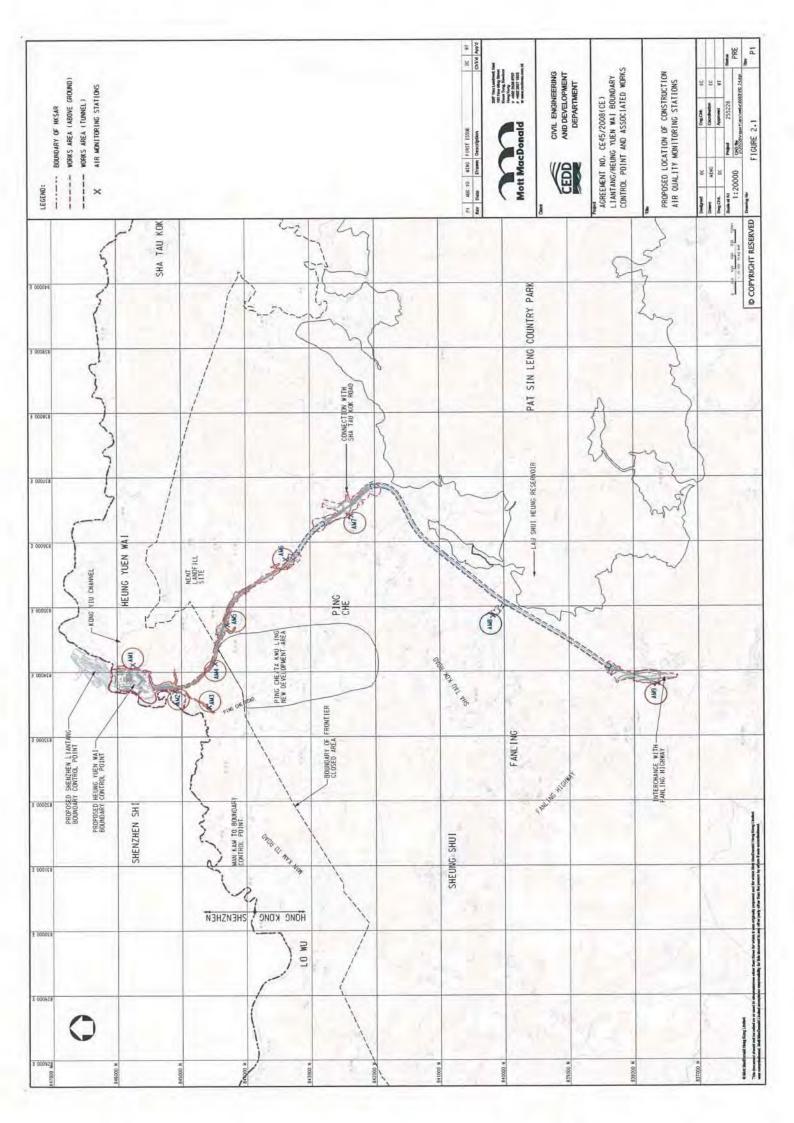
CEDD Contract No: NE/2014/03

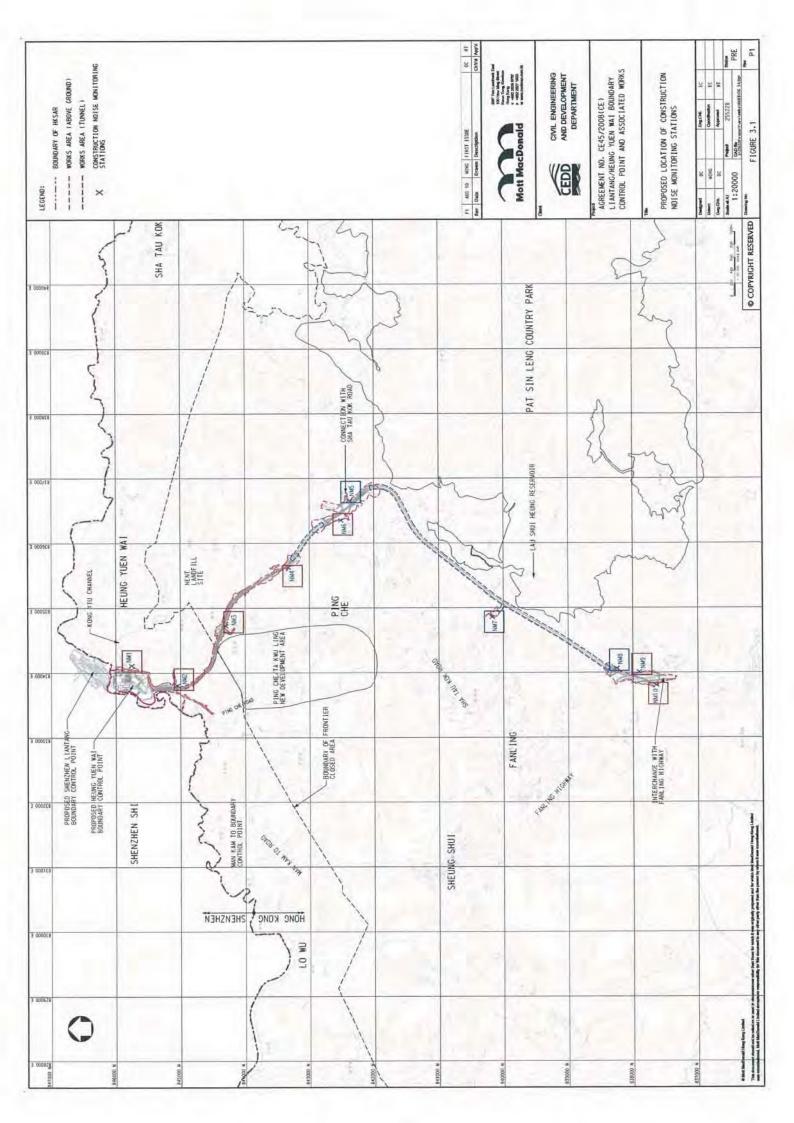
Tentative Three Months Construction Rolling Progam

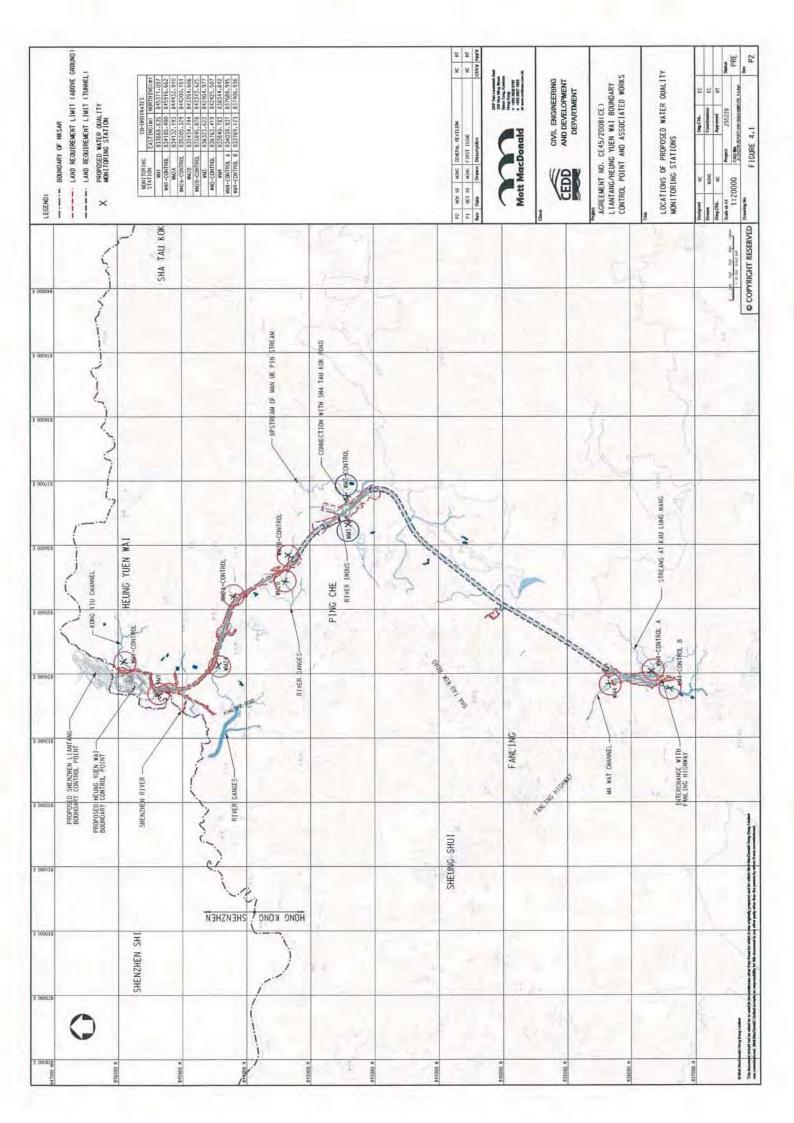
Item	Construction Activites
1	Bridge A- Piling
2	Bridge A - G.I. Works
3	Bridge B- Caps and Column
4	Bridge D -Caps and Column
5	Bridge E- G.I. Works
6	Bridge E - Piling
7	Bridge C - Piling
8	Bridge C - Caps and Column

Contract SS C505

ArchSD Contract No: SSC505 Main Contractor: Leighton

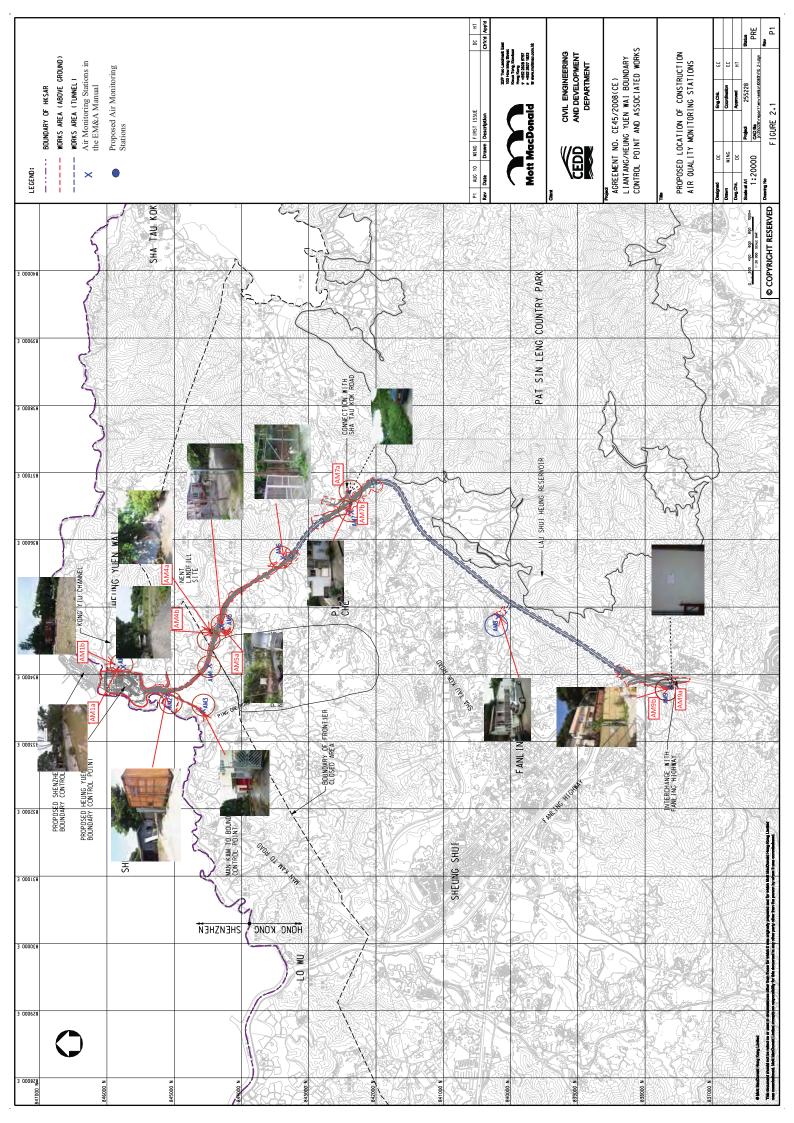

Tentative Three Months(June, July, August 2016) Construction Rolling Progam

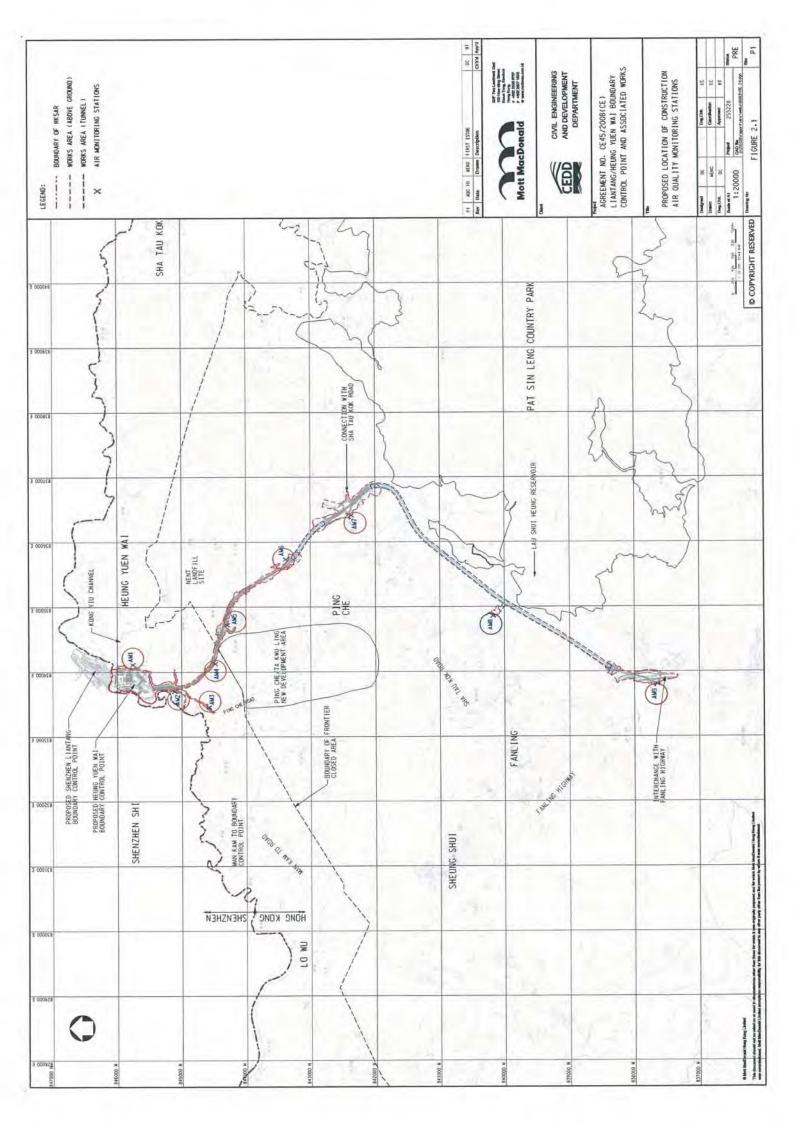

Item	Construction Activites								
1	1 Establishment Mobilisation & Advance Works								
2	Setup Tower Cranes								
3	Passenger Terminal Building - Foundation Works								
	Passenger Terminal Building - Substructure Works								
	Passenger Terminal Building - RC Structures								
	HKPF Building - Install Driven H-piles								
	Fire Station - Install Driver H-piles and Proof Drilling & Loading Test								
	Drill Tower - Install Driven H-piles and Excavation								
	Cargo Examination Building (Inbound) - Foundation, Pilecaps and RC Structure								
	Cargo Examination Building (Outbound) - Pilecaps and RC Structure								
	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) - Foundations and Structural Works								
	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) - Foundations and Structural Works								
	GV Kiosk (Inbound) - Foundations								
	GV Kiosk (Outbound) - Foundations								
	MXRVSS (Outbound) - Structures								
	Fire Hydrant Tank & Pump Room - Site Formation and Structural Works								
	Elevated Walkway - Foundation Works								
18	Vehicular bridges - Foundation works, Pilecaps / Piers / abutment / retaining walls / portal								

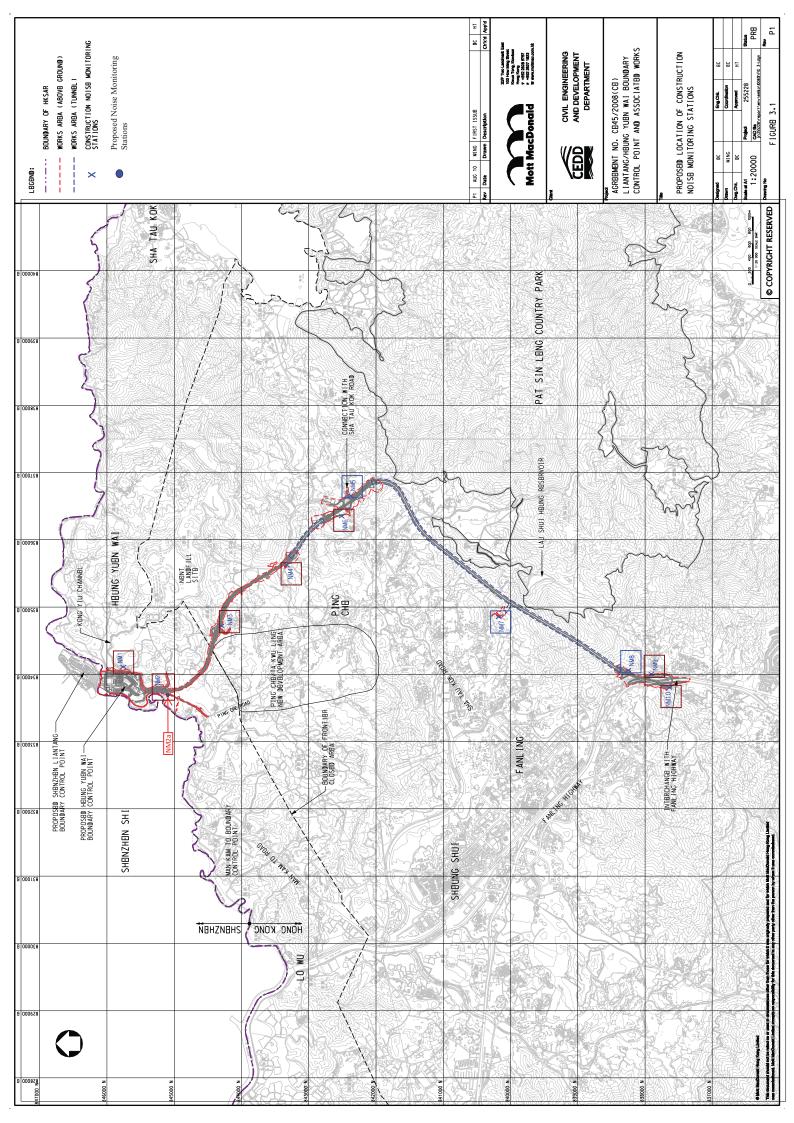


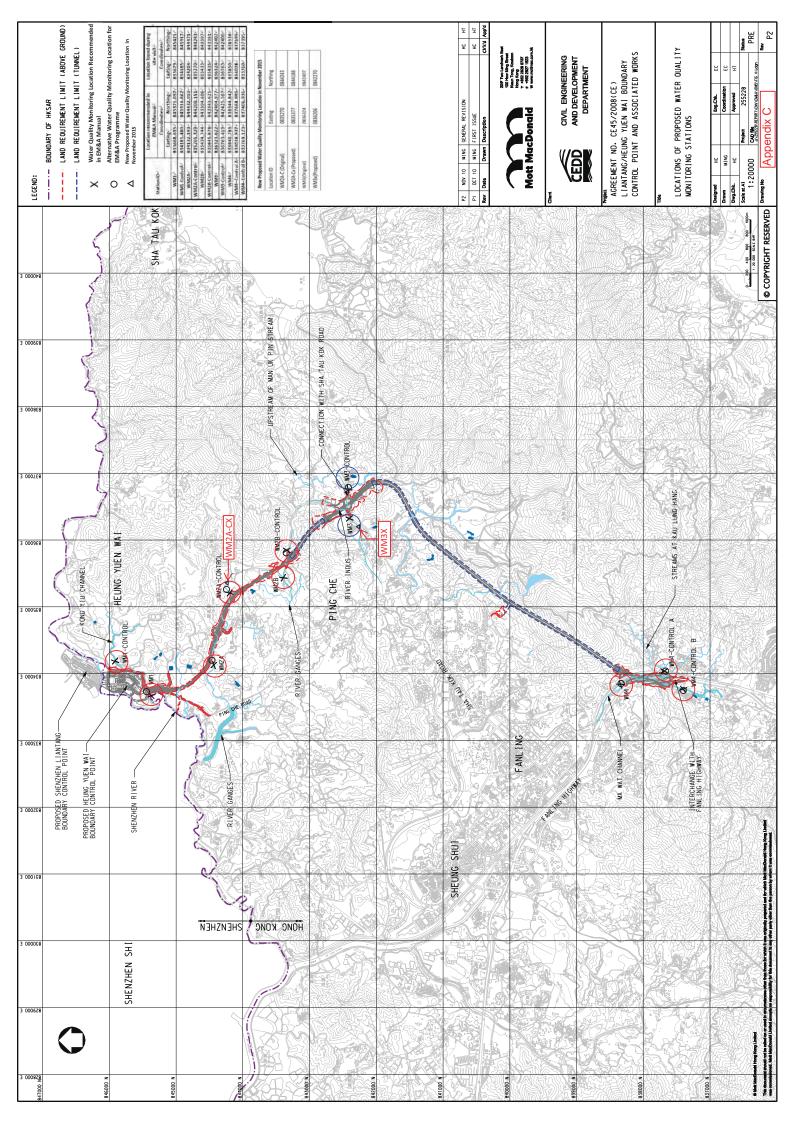
Appendix D

Designated Monitoring Locations as Recommended in the Approved EM&A Manual








Appendix E

Monitoring Locations for Impact Monitoring

Photographic Records for Water Quality Monitoring Location

Alternative Location of WM1

Alternative Location of WM1 – Control (WM1-C)

Alternative Location of WM2A

Alternative Location of WM2-Control (WM2-C)

Alternative Location of WM2- Control X (WM2-CX)

Location of WM2B-Control (WM2B-C)

Location of WM2B

Location of WM3-Control (WM3-C)

Location of WM3

Alternative Location of WM3X

Location of WM4–Control A (WM4-CA)

Location of WM4-Control B (WM4-CB)

Location of WM4

Appendix F

Calibration Certificate of Monitoring Equipment and HOKLASaccreditation Certificate of the Testing Laboratory

Location : Garden Farm, Tsung Yuen Ha Village

Location ID : AM1b

Date of Calibration: 26/4/2016

Next Calibration Date: 26/6/2016

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1009.5 27.2

Corrected Pressure (mm Hg)
Temperature (K)

757.125 300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1612

Qstd Slope -> Qstd Intercept -> 2.00411 -0.03059

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.8	6.8	13.6	1.845	53	52.71	Slope = 32.4196
13	5.1	5.1	10.2	1.600	46	45.74	Intercept = -6.5421
10	3.9	3.9	7.8	1.401	40	39.78	Corr. coeff. = 0.9984
7	2.6	2.6	5.2	1.147	30	29.83	
5	1.5	1.5	3.0	0.875	22	21.88	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

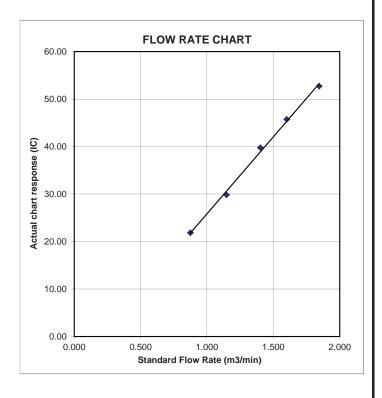
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Village House near Lin Ma Hang Road Date of Calibration: 26/4/2016
Location ID: AM2 Next Calibration Date: 26/6/2016
Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1009.5 27.2 Corrected Pressure (mm Hg)
Temperature (K)

300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1612

Qstd Slope -> Qstd Intercept ->

2.00411 -0.03059

CALIBRATION

- 1								
	Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
	No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
	18	6.2	6.2	12.4	1.763	53	52.71	Slope = 31.5538
	13	5.0	5.0	10.0	1.584	47	46.74	Intercept = -2.8452
	10	3.8	3.8	7.6	1.383	42	41.77	Corr. coeff. = 0.9987
	7	2.6	2.6	5.2	1.147	33	32.82	
	5	1.4	1.4	2.8	0.846	24	23.87	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

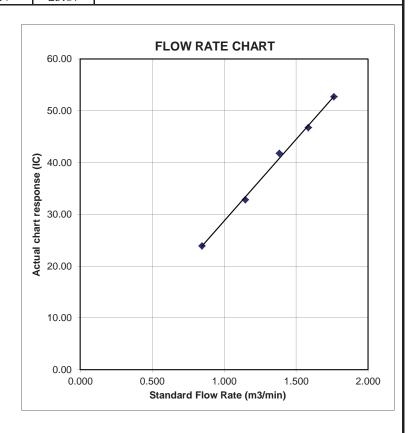
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location : Ta Kwu Ling Fire Service StationDate of Calibration:26/4/2016Location ID : AM3Next Calibration Date:26/6/2016

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1009.5 27.2

Corrected Pressure (mm Hg)
Temperature (K)

757.125 300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1612

Qstd Slope -> Qstd Intercept -> 2.00411 -0.03059

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.0	6.0	12.0	1.734	57	56.68	Slope = 29.5137
13	4.9	4.9	9.8	1.569	49	48.73	Intercept = 3.8880
10	3.7	3.7	7.4	1.365	43	42.76	Corr. coeff. = 0.9909
7	2.4	2.4	4.8	1.102	38	37.79	
5	1.3	1.3	2.6	0.815	28	27.84	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

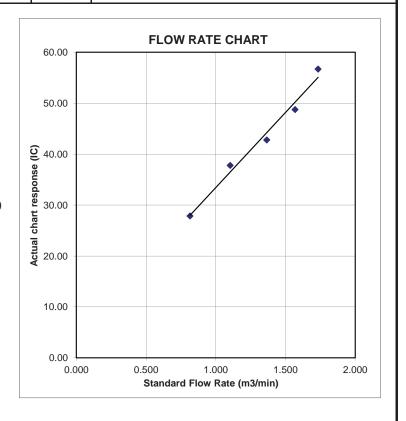
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Ping Yeung Village House

Date of Calibration: 28/4/2016

Location ID: AM4a

Next Calibration Date: 28/6/2016

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1010.4 26.0

Corrected Pressure (mm Hg)
Temperature (K)

757.8 299

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1612

Qstd Slope -> Qstd Intercept -> 2.00411 -0.03059

CALIBRATION

ı								
	Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
	No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
ı	18	6.4	6.4	12.8	1.795	57	56.82	Slope = 31.6136
	13	5.2	5.2	10.4	1.619	51	50.84	Intercept = -0.1984
	10	4	4	8.0	1.422	45	44.86	Corr. coeff. = 0.9994
	7	2.8	2.8	5.6	1.192	37	36.88	
ı	5	1.5	1.5	3.0	0.877	28	27.91	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart respones

I = actual chart response

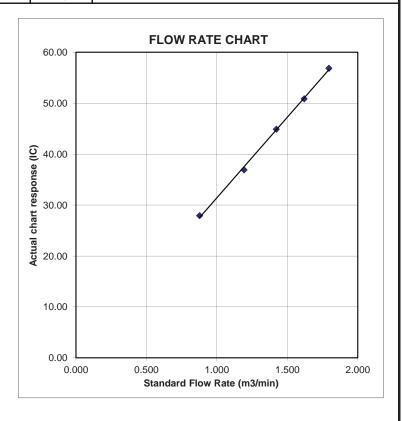
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location : Ping Yeung Village HouseDate of Calibration:28/4/2016Location ID : AM5Next Calibration Date:28/6/2016

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1010.4 26.0

Corrected Pressure (mm Hg)
Temperature (K)

757.8 299

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1612

Qstd Slope -> Qstd Intercept ->

2.00411 -0.03059

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.6	6.6	13.2	1.822	55	54.83	Slope = 31.0094
13	5.3	5.3	10.6	1.635	50	49.84	Intercept = -1.2784
10	3.8	3.8	7.6	1.387	42	41.87	Corr. coeff. = 0.9997
7	2.4	2.4	4.8	1.105	33	32.90	
5	1.4	1.4	2.8	0.848	25	24.92	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

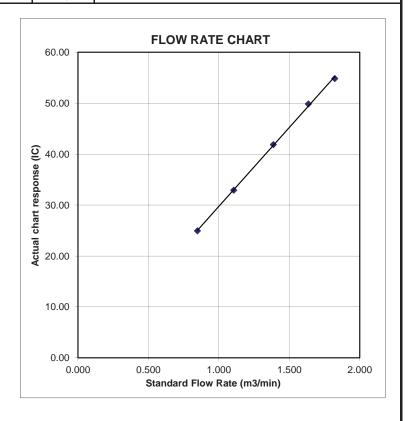
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Wo Keng Shan Village House Date of Calibration: 28/4/2016 Location ID: AM6 Next Calibration Date: 28/6/2016 Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa)

1010.4 Temperature (°C) 26.0

Corrected Pressure (mm Hg) Temperature (K)

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A Serial # -> 1612

Qstd Slope -> Qstd Intercept ->

.00411 -0.03059

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.6	6.6	13.2	1.822	56	55.83	Slope = 26.5427
13	5.4	5.4	10.8	1.650	51	50.84	Intercept = 7.4260
10	3.8	3.8	7.6	1.387	45	44.86	Corr. coeff. = 0.9993
7	2.3	2.3	4.6	1.082	36	35.89	
5	1.4	1.4	2.8	0.848	30	29.91	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart respones

I = actual chart response

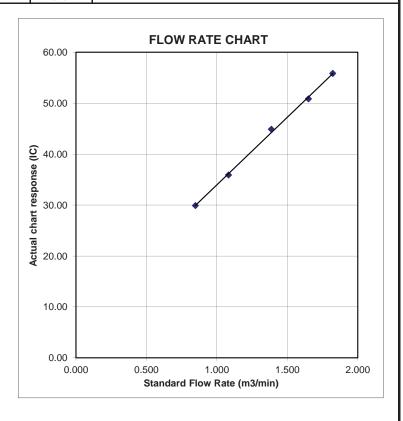
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Village House of Loi Tung Village

Date of Calibration: 28/4/2016

Location ID: AM7b

Next Calibration Date: 28/6/2016

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1010.4 26.0

Corrected Pressure (mm Hg)
Temperature (K)

757.8 299

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1612

Qstd Slope -> Qstd Intercept ->

2.00411 -0.03059

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.1	5.1	10.2	1.604	54	53.83	Slope = 34.5062
13	4.2	4.2	8.4	1.457	49	48.85	Intercept = -1.4232
10	3.2	3.2	6.4	1.274	43	42.87	Corr. coeff. = 0.9997
7	2.1	2.1	4.2	1.035	34	33.89	
5	1.3	1.3	2.6	0.817	27	26.92	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

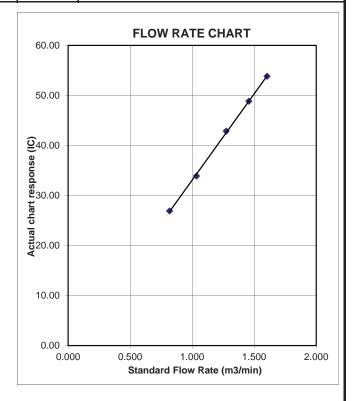
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Po Kat Tsai Village No. 4

Date of Calibration: 28/4/2016

Location ID: AM8

Date of Calibration: 28/6/2016

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1010.4 26.0 Corrected Pressure (mm Hg)
Temperature (K)

757.8 299

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1612

Qstd Slope -> Qstd Intercept ->

2.00411 -0.03059

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.5	6.5	13.0	1.809	63	62.80	Slope = 30.5066
13	5.2	5.2	10.4	1.619	56	55.83	Intercept = 7.1116
10	3.9	3.9	7.8	1.404	50	49.84	Corr. coeff. = 0.9992
7	2.5	2.5	5.0	1.128	42	41.87	
5	1.4	1.4	2.8	0.848	33	32.90	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

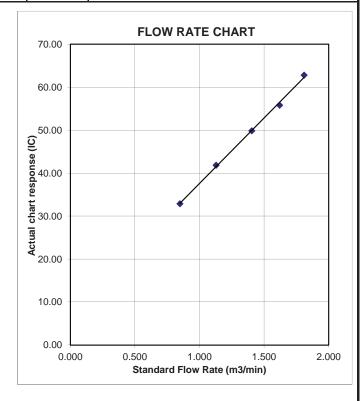
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Nam Wa Po Village House No. 80

Date of Calibration: 26/4/2016

Location ID: AM9b

Next Calibration Date: 26/6/2016

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1009.5 27.2

Corrected Pressure (mm Hg)
Temperature (K)

757.125 300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1612

Qstd Slope -> Qstd Intercept -> 2.00411 -0.03059

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.4	6.4	12.8	1.791	55	54.69	Slope = 27.9614
13	5.1	5.1	10.2	1.600	50	49.72	Intercept = 4.2062
10	4.0	4.0	8.0	1.419	43	42.76	Corr. coeff. = 0.9952
7	2.7	2.7	5.4	1.168	36	35.80	
5	1.4	1.4	2.8	0.846	29	28.84	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

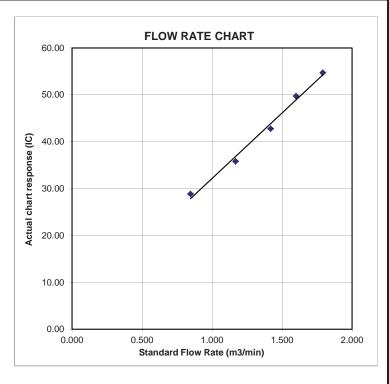
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

				242555555	METER	ORFICE
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	DIFF Hg (mm)	DIFF H2O (in.)
1	NA	NA	1.00	1.3770	2.2	
2	NA	NA NA	1.00	0.9710	3.2 6.4	2.0
3	NA	NA	1.00	0.8710	7.8	4.0
4	NA	NA	1.00	0.8310	8.7	5.5
5	NA	NA	1.00	0.6860	12.6	8.0

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9866 0.9824 0.9804 0.9793 0.9741	0.7165 1.0117 1.1256 1.1785 1.4200	1.4078 1.9909 2.2259 2.3345 2.8155	0.9957 0.9914 0.9894 0.9883 0.9830	0.7231 1.0210 1.1360 1.1893 1.4330	0.8896 1.2581 1.4066 1.4753 1.7792
Qstd sld intercer coeffic	ot (b) = ient (r) =	2.00411 -0.03059 0.99995	Qa slop intercep coeffici	t (b) =	1.25494 -0.01933 0.99995
y axis =	= SQRT[H2O(I	Pa/760) (298/Ta)]	y axis =	SQRT [H20 (T	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)

Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 2X6145

Equipment Ref: EQ105

Job Order HK1603558

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 2 January 2016

Equipment Verification Results:

Testing Date: 4 to 6 January 2016

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1602	11.7
2hr42min	17:00 ~ 19:42	20.7	20.7 1015.9	0.021	1522	9.3
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3347	23.6

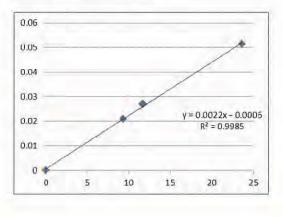
Sensitivity Adjustment Scale Setting (Before Calibration) 593

Sensitivity Adjustment Scale Setting (After Calibration) 596

Linear Regression of Y or X

Slope (K-factor): 0.0022

Correlation Coefficient 0.9985


Date of Issue 11 January 2016

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

(CPM)

(CPM)

QC Reviewer : Ben Tam Signature : Date : 12 January 2016

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 2-Jan-16
Location ID: Calibration Room Next Calibration Date: 2-Apr-16

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1022 18.9

Corrected Pressure (mm Hg)
Temperature (K)

766.5 292

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Calibration Date->	24-Mar-15

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.10265 -0.00335 24-Mar-16

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4.1	4.1	8.2	1.384	56	56.82	Slope = 30.1332
13	3.2	3.2	6.4	1.222	52	52.76	Intercept = 15.8637
10	2.4	2.4	4.8	1.059	48	48.71	Corr. coeff. = 0.9950
8	1.6	1.6	3.2	0.865	42	42.62	
5	1.0	1.0	2.0	0.684	35	35.51	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

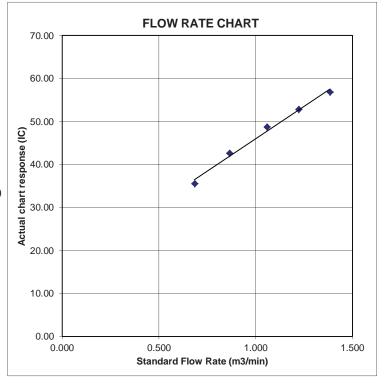
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 366409

Equipment Ref: EQ109

Job Order HK1603560

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 2 January 2016

Equipment Verification Results:

Testing Date: 4 to 6 January 2016

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1577	11.5
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1433	8.8
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3328	23.5

Sensitivity Adjustment Scale Setting (Before Calibration) 540 (CPM)

Sensitivity Adjustment Scale Setting (After Calibration) 540 (CPM)

Linear Regression of Y or X

Slope (K-factor): 0.0022

Correlation Coefficient 0.9975

Date of Issue 11 January 2016

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.06 0.05 0.04 0.03 0.02 0.01 0 5 10 15 20 25

QC Reviewer : _____ Ben Tam ___ Signature : _____ Date : ____ 12 January 2016

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 2-Jan-16
Location ID: Calibration Room Next Calibration Date: 2-Apr-16

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1022 18.9

Corrected Pressure (mm Hg)
Temperature (K)

766.5 292

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Calibration Date->	24-Mar-15

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.10265 -0.00335 24-Mar-16

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4.1	4.1	8.2	1.384	56	56.82	Slope = 30.1332
13	3.2	3.2	6.4	1.222	52	52.76	Intercept = 15.8637
10	2.4	2.4	4.8	1.059	48	48.71	Corr. coeff. = 0.9950
8	1.6	1.6	3.2	0.865	42	42.62	
5	1.0	1.0	2.0	0.684	35	35.51	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

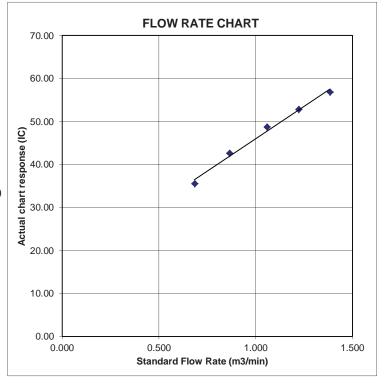
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 366410

Equipment Ref: EQ110

Job Order HK1603561

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 2 January 2016

Equipment Verification Results:

Testing Date: 4 to 6 January 2016

Hour	Hour Time T		Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1566	11.4
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1422	8.7
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3318	23.4

Sensitivity Adjustment Scale Setting (Before Calibration) 660 (CPM)

Sensitivity Adjustment Scale Setting (After Calibration) 661 (CPM)

Linear Regression of Y or X

 Slope (K-factor):
 0.0022

 Correlation Coefficient
 0.9973

Date of Issue 11 January 2016

Remarks:

- 1. Strong Correlation (R>0.8)
- Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.05			/	-
0.04		/		_
0.03	*			
0.02	*	y =	0.0022x+	0.001
0.02	 *	y =	$R^2 = 0.99$	0.001 73
	*	у =	R ² = 0.99	0,001 73
0.02	*	γ=	R ² = 0.99	0,001 73

Operator: Donald Kwok Signature: Date: 12 January 2016

QC Reviewer: Ben Tam Signature: Date: 12 January 2016

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 2-Jan-16
Location ID: Calibration Room Next Calibration Date: 2-Apr-16

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1022 18.9

Corrected Pressure (mm Hg)
Temperature (K)

766.5 292

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Calibration Date->	24-Mar-15

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.10265 -0.00335 24-Mar-16

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4.1	4.1	8.2	1.384	56	56.82	Slope = 30.1332
13	3.2	3.2	6.4	1.222	52	52.76	Intercept = 15.8637
10	2.4	2.4	4.8	1.059	48	48.71	Corr. coeff. = 0.9950
8	1.6	1.6	3.2	0.865	42	42.62	
5	1.0	1.0	2.0	0.684	35	35.51	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

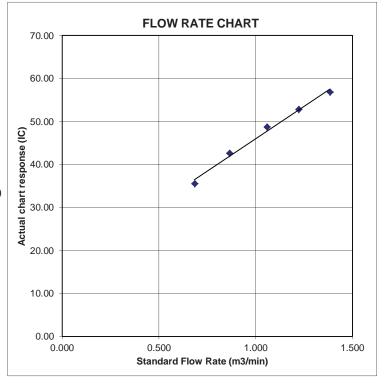
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 3Y6503

Equipment Ref: EQ112

Job Order HK1603553

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 2 January 2016

Equipment Verification Results:

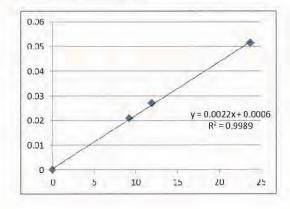
Testing Date: 4 to 6 January 2016

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)	
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1633	11.9	
2hr42min	17:00 ~ 19:42	20.7	.7 1015.9	20.7 1015.9	0.021	1502	9.2
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3365	23.8	

642 (CPM) 648 (CPM)

Linear Regression of Y or X

Slope (K-factor): 0.0022


Correlation Coefficient 0.9989

Date of Issue _____11 January 2016

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

QC Reviewer: Ben Tam Signature: Date: 12 January 2016

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 2-Jan-16
Location ID: Calibration Room Next Calibration Date: 2-Apr-16

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1022 18.9

Corrected Pressure (mm Hg)
Temperature (K)

766.5 292

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Calibration Date->	24-Mar-15

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.10265 -0.00335 24-Mar-16

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in) (in)		(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4.1	4.1	8.2	1.384	56	56.82	Slope = 30.1332
13	3.2	3.2	6.4	1.222	52	52.76	Intercept = 15.8637
10	2.4	2.4	4.8	1.059	48	48.71	Corr. coeff. = 0.9950
8	1.6	1.6	3.2	0.865	42	42.62	
5	1.0	1.0	2.0	0.684	35	35.51	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

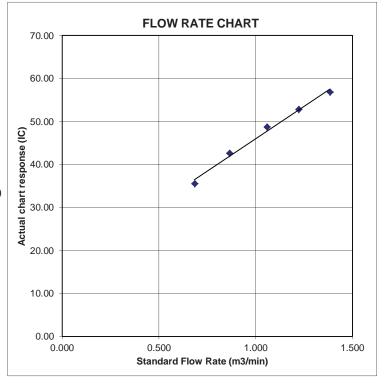
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 3Y6505

Equipment Ref: EQ114

Job Order HK1603562

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 2 January 2016

Equipment Verification Results:

Testing Date: 4 to 6 January 2016

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1589	11.6
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1473	9.0
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3314	23.4

Sensitivity Adjustment Scale Setting (Before Calibration) 59
Sensitivity Adjustment Scale Setting (After Calibration) 59

588 (CPM) 585 (CPM)

Linear Regression of Y or X

Slope (K-factor): 0.0022

Correlation Coefficient 0.9985

Date of Issue 11 January 2016

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.06					
0.05				/	*
0.04			/		_
			/		
0.03		*			
		*	y =	= 0.0022x+	0.000
	-	**	y =	= 0.0022x+ R ² = 0.99	0.000 85
0.02	/	**	y =	= 0.0022x+ R ² = 0.99	0.000°
0.03		**	y =	= 0.0022x+ R ² = 0.99	0.000°

Operator: Donald Kwok Signature: Date: 12 January 2016

QC Reviewer: Ben Tam Signature: Date: 12 January 2016

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 2-Jan-16
Location ID: Calibration Room Next Calibration Date: 2-Apr-16

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1022 18.9

Corrected Pressure (mm Hg)
Temperature (K)

766.5 292

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Calibration Date->	24-Mar-15

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.10265 -0.00335 24-Mar-16

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in) (in)		(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4.1	4.1	8.2	1.384	56	56.82	Slope = 30.1332
13	3.2	3.2	6.4	1.222	52	52.76	Intercept = 15.8637
10	2.4	2.4	4.8	1.059	48	48.71	Corr. coeff. = 0.9950
8	1.6	1.6	3.2	0.865	42	42.62	
5	1.0	1.0	2.0	0.684	35	35.51	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

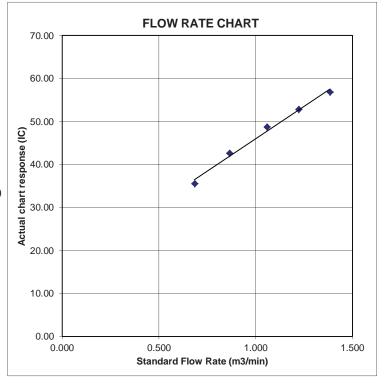
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C

C153055

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC15-0720)

Date of Receipt / 收件日期: 15 May 2015

Description / 儀器名稱

Integrating Sound Level Meter (EQ065)

Manufacturer / 製造商

Brüel & Kjær

Model No. /型號 Social No. /矩號

2238

Serial No./編號

2337676

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 温度 : (23 ± 2)°C

Relative Humidity / 相對濕度 : (55 ± 20)%

Line Voltage / 電壓 : ---

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 4 June 2015

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

1

K C Lee Project Engineer

Certified By 核證

K M Wu

Date of Issue 簽發日期 5 June 2015

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可潮源至國際標準。局部複印本證書需先獲本實驗所書而批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No. : C153055

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

Test equipment: 3.

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator

C150014

Multifunction Acoustic Calibrator

DC130171

4. Test procedure: MA101N.

5. Results:

5.1 Sound Pressure Level

	UUT	Setting		Applie	d Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	A	F	94.00	1	94.0	± 0.7

5.1.2 Linearity

	UU	Γ Setting		Applie	d Value	UUT	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
50 - 130	LAFP	A	F	94.00	1	94.0 (Ref.) 104.0	
150				104.00			
				114.00		114.0	

IEC 60651 Type 1 Spec. : ± 0.4 dB per 10 dB step and ± 0.7 dB for overall different.

5.2 Time Weighting

5.2.1 Continuous Signal

	UUT	Setting		Applie	d Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)	
50 - 130	LAFP		F	94.00	1	94.0	Ref.	
	L _{ASP}		S			94.0	± 0.1 ± 0.1	
	L _{AIP}		1			94.0		

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准。

c/o 香港新界屯門興安里一號青山灣機樓四樓

Fnx/例頁: 2744 8986 Tel/電話: 2927 2606 E-mai/AME: callab@suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C153055

證書編號

5.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		App	lied Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)	
30 - 110	LAFP	L _{AFP} A		106.0	Continuous	106.0	Ref.	
	LAFMax				200 ms	105.0	-1.0 ± 1.0	
	L _{ASP}		S		Continuous	106.0	Ref.	
	LASMax				500 ms	102.0	-4.1 ± 1.0	

5.3 Frequency Weighting

5.3.1 A-Weighting

	UUT	Setting		Appli	ed Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	A	F	94.00	31.5 Hz	54.8	-39.4 ± 1.5
	1,000				63 Hz	67.9	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5; -3.0)
					12.5 kHz	89.8	-4.3 (+3.0; -6.0)

5.3.2 C-Weighting

	UUT	Setting		Appli	ed Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{CFP}	C	F	94.00	31.5 Hz	91.1	-3.0 ± 1.5
					63 Hz	93.2	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	93.9	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	91.0	-3.0 (+1.5; -3.0)
					12.5 kHz	87.9	-6.2 (+3.0; -6.0)

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory
c/o 4/F, Tsing Shan Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kong

師削工程有限公司 - 校正及檢測實驗所 c/a 香港新界屯門鲍安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/賴地: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C153055

證書編號

5.4 Time Averaging

	บบา	Setting			A		TUUT	IEC 60804		
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type I Spec. (dB)
30 - 110	LAcq	A	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						1/102		90	89.7	± 0.5
			60 sec.			1/103		80	79.8	± 1.0
			5 min.			1/104		70	69.7	± 1.0

Remarks: - UUT Microphone Model No.: 4188 & S/N: 2812708

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : 31.5 Hz - 125 Hz : ± 0.35 dB

250 Hz - 500 Hz : ± 0.30 dB 1 kHz ; ± 0.20 dB 2 kHz - 4 kHz : ± 0.35 dB 8 kHz : ± 0.45 dB : ± 0.70 dB 12.5 kHz

104 dB: 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$: ± 0.10 dB (Ref. 94 dB) : ± 0.2 dB (Ref. 110 dB 114 dB: 1 kHz Burst equivalent level continuous sound level)

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准。

⁻ The uncertainties are for a confidence probability of not less than 95 %.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C161797

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC16-0662)

Date of Receipt / 收件日期: 22 March 2016

Description / 儀器名稱 : So

Sound Level Meter (EQ014)

Manufacturer / 製造商

Rion

Model No. / 型號 Serial No. / 編號

NL-52 00142580

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 温度 : (23 ± 2)°C

Line Voltage/電壓: ---

Relative Humidity / 相對濕度 ; (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期 : 6 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification. (after adjustment)

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試 1

H T Wong Technical Officer

Certified By 核證

3

A_

K.C. Lee Project Engineer Date of Issue 簽發日期 7 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shalf not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. :

C161797

證書編號

 The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.3.2.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator C160077

Multifulction Acoustic Cal

PA160023

5. Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Adjustment

	UUT Setting				d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class I Spec. (dB)
30 - 130	LA	A	Fast	94.00	1	* 91.9	±1.1

^{*} Out of IEC 61672 Class 1 Spec.

6.1.1.2 After Adjustment

UUT Setting				Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class I Spec. (dB)
30 - 130	L _A	A	Fast	94.00	I	94.0	± 1.1

6.1.2 Linearity

	UU'	T Setting	Applied Value		UUT	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	LA	A	Fast	94.00	1	94.0 (Ref.)
		1 1		104.00		104.0
				114.00		114.0

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

The test equipment used for cambration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C161797

證書編號

6.2 Time Weighting

UUT Setting			Applied Value		UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	1	94.0	Ref.
			Slow			94.0	± 0.3

6.3 Frequency Weighting

A-Weighting 6.3.1

	UUT	Setting		Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	-130 L _A A	Fast	94.00	63 Hz	67.7	-26.2 ± 1.5	
			125 Hz	77.8	-16.1 ± 1.5		
				250 Hz	85.3	-8.6 ± 1.4	
					500 Hz	90.7	-3.2 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.6$
					4 kHz	95.0	$+1.0 \pm 1.6$
					8 kHz	92.9	-1.1 (+2.1; -3.1)
					12.5 kHz	89.5	-4.3 (+3.0; -6.0)

C-Weighting 6.3.2

	UUT	Setting		Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _C	C	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5
	-		10000	1000	125 Hz	93.8	-0.2 ± 1.5
				250 Hz	94.0	0.0 ± 1.4	
					500 Hz	94.0	0.0 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.6
					4 kHz	93.2	-0.8 ± 1.6
					8 kHz	91.0	-3.0 (+2.1; -3.1
					12.5 kHz	87.6	-6.2 (+3.0 ; -6.0

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C161797

證書編號

Remarks: - UUT Microphone Model No.: UC-59 & S/N: 07725

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value: 94 dB : 63 Hz - 125 Hz : ± 0.35 dB

250 Hz - 500 Hz : ± 0.30 dB 1 kHz : ± 0.20 dB 2 kHz - 4 kHz : ± 0.35 dB 8 kHz : ± 0.45 dB

12.5 kHz : ± 0.70 dB

104 dB: 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB: 1 kHz $\pm 0.10 \text{ dB (Ref. 94 dB)}$

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C162177

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC16-0843)

Date of Receipt / 收件日期: 14 April 2016

Description / 儀器名稱

Integrating Sound Level Meter (EQ006)

Manufacturer / 製造商

Brüel & Kjær

Model No. /型號

2238

Serial No./編號

2285762

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}C$

Relative Humidity / 相對濕度:

Line Voltage / 電壓:

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

25 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies

- Fluke Everett Service Center, USA

- Rohde & Schwarz Laboratory, Germany

Tested By

測試

HT Wong

Certified By

Technical Officer

K C/Lee Project Engineer Date of Issue 簽發日期

27 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本趋書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C162177

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to 1. warm up for over 10 minutes before the commencement of the test.

Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4. 2.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

C160077 PA160023

5. Test procedure: MA101N.

Results: 6.

Sound Pressure Level 6.1

6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

	UUT	Setting	Applied	UUT		
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	LAFP	A	F	94.00	I	94.2

6.1.1.2 After Self-calibration

	UUT Setting				Applied Value		IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	A	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

	UU'.	Γ Setting	Applied	d Value	UUT	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	LAFP	A	F	94.00	1	94.0 (Ref.)
	7411			104.00		104.0
				114.00		113.9

IEC 60651 Type I Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C162177

證書編號

6.2 Time Weighting

Continuous Signal 6.2.1

UUT Setting			Applie	d Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	A	F	94.00	1	94.0	Ref.
	LASP		S			94.0	± 0.1
	LAIP		1			94.1	± 0.1

Tone Burst Signal (2 kHz) 6.2.2

	UUT Setting			Applied Value		UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)
30 - 110 L	LAFP	A	F	106.0	Continuous	106.0	Ref.
	LAFMax				200 ms	105.0	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Appli	ed Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	A	F	94.00	31.5 Hz	55.1	-39.4 ± 1.5
			63 Hz	67.9	-26.2 ± 1.5		
				125 Hz	77.9	-16.1 ± 1.0	
				250 Hz	85.3	-8.6 ± 1.0	
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	91.0	-1.1 (+1.5; -3.0)
					12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

本證書所載校正用之測試器材均可測源至國際標準。局部模印本證書需先發本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C162177

證書編號

C-Weighting 6.3.2

UUT Setting			Applied Value		UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LCFP	C	F	94.00	31.5 Hz	91.5	-3.0 ± 1.5
	5.00				63 Hz	93.4	-0.8 ± 1.5
					125 Hz	93.9	-0.2 ± 1.0
					250 Hz	94.1	0.0 ± 1.0
					500 Hz	94.1	0.0 ± 1.0
		1	1 /		1 kHz	94.1	Ref.
					2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	92.9	-3.0 (+1.5; -3.0)
					12.5 kHz	87.9	-6.2 (+3.0; -6.0)

6.4 Time Averaging

UUT Setting			Applied Value				UUT	IEC 60804		
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAcq	A	10 sec.	4	1	1/10	110.0	100	100.0	±0.5
						1/102		90	89.9	± 0.5
			60 sec.			1/103		80	79.2	±1.0
			5 min.			1/104		70	69.2	±1.0

Remarks: - UUT Microphone Model No.: 4188 & S/N: 2812705

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : 31.5 Hz - 125 Hz : ± 0.35 dB

250 Hz - 500 Hz : ± 0.30 dB : ± 0.20 dB 1 kHz 2 kHz - 4 kHz : ± 0.35 dB 8 kHz : ± 0.45 dB

12.5 kHz ; ± 0.70 dB

104 dB: I kHz : ± 0.10 dB (Ref. 94 dB) 114 dB: 1 kHz : ± 0.10 dB (Ref. 94 dB) ; ± 0.2 dB (Ref. 110 dB Burst equivalent level

continuous sound level)

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

c/o 香港新界屯門興安里一號青山灣機權四樓

E-mail/電郵: callab@suncreation.com Website/翻址: www.suncreation.com Tel/電話: 2927 2606 Fax/傳真: 2744 8986

⁻ The uncertainties are for a confidence probability of not less than 95 %.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C152550

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC15-0720)

Date of Receipt / 收件日期: 16 April 2015

Description / 儀器名稱 Acoustical Calibrator (EQ081)

Manufacturer / 製造商 Brüel & Kjær Model No. / 型號 4231 Serial No. / 編號 2326408

Supplied By / 委託者 Action-United Environmental Services and Consulting

> Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : Relative Humidity / 相對濕度: $(23 \pm 2)^{\circ}C$ $(55 \pm 20)\%$

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 7 May 2015

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

K C/Lee Project Engineer

Certified By 核證

KMW Engineer Date of Issue 簽發日期

12 May 2015

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可測源至國際標準。 局部複印本證書需先養本實驗所書而批准+

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C152550

證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment:

Equipment ID Description Certificate No. CL130 Universal Counter C143868 Multifunction Acoustic Calibrator CL281 DC130171 TST150A Measuring Amplifier C141558

- 4. Test procedure: MA100N.
- Results:

5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

Tel/電話: 2927 2606

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior swritten approval of this laboratory

E-mail/行動 callab@suncreation.com Website/報句 www.suncremion.com

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准

Fax/WIL: 2744 8986

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C162125

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC16-0843)

Date of Receipt / 收件日期: 14 April 2016

Description / 儀器名稱

Acoustical Calibrator (EQ082)

Manufacturer / 製造商 Model No. / 型號 Brüel & Kjær

Serial No. / 編號

4231 2713428

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}C$

Line Voltage / 電壓 : ---

Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 22 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies

- Rohde & Schwarz Laboratory, Germany

- Fluke Everett Service Center, USA

Tested By 測試

H T Wong Technical Officer

Certified By 核證

K C/Lee Project Engineer Date of Issue 簽發日期 25 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C162125

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement
of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID
CL130Description
Universal CounterCertificate No.
C153519CL281Multifunction Acoustic Calibrator
Measuring AmplifierPA160023
C161175

Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.1		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark ! The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書寫先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street

Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM

CLIENT: ACTION UNITED ENVIRO SERVICES
ADDRESS: RM A 20/F., GOLD KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD,

KWAI CHUNG, N.T., HONG KONG. WORK ORDER: HK1614299

SUB-BATCH: 0

0

LABORATORY: DATE RECEIVED: HONG KONG

DATE OF ISSUE:

11/04/2016 18/04/2016

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:

Dissolved Oxygen and Temperature

Equipment Type:

Dissolved Oxygen Meter

Brand Name:

YSI

Model No.: Serial No.: YSI Pro 20

Serial No..

12C100570

Equipment No.:

Date of Calibration: 18 April, 2016

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Chee, Richard

General Manager -

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: HK1614299

Sub-Batch:

Date of Issue: 18/04/2016

Client: **ACTION UNITED ENVIRO SERVICES**

Equipment Type: Dissolved Oxygen Meter

Brand Name:

Model No .: YSI Pro 20 Serial No .: 12C100570

Equipment No.:

Date of Calibration: 18 April, 2016 Date of next Calibration:

18 July, 2016

Parameters:

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.00	3.12	+0.12
5.06	5.06	0.00
9.01	9.04	+0.03
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10	9.97	-0.0
20	19.5	-0.5
40	41.0	+1.0
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street

Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR BEN TAM

CLIENT: ADDRESS: **ACTION UNITED ENVIRO SERVICES** RM A 20/F., GOLD KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD,

KWAI CHUNG, N.T., HONG KONG WORK ORDER:

HK1614295

SUB-BATCH:

LABORATORY: DATE RECEIVED: HONG KONG

DATE OF ISSUE:

11/04/2016 18/04/2016

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:

Turbidity

Equipment Type:

Turbidimeter

Brand Name:

HACH 2100Q

Model No .: Serial No.:

12060C018266

Equipment No.:

Date of Calibration: 18 April, 2016

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Chee, Richard

General Manager

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1614295

Sub-batch:

0

Date of Issue:

18/04/2016

Client:

ACTION UNITED ENVIRO SERVICES

Equipment Type:

Turbidimeter

Brand Name:

HACH

Model No .:

2100Q

Serial No .:

12060C018266

Equipment No.: Date of Calibration:

18 April, 2016

Date of next Calibration:

18 July, 2016

Parameters:

Turbidity

Method Ref: APHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.18	4
4	4.07	+1.8
40	36.4	-9.0
80	75.6	-5.5
400	413	+3.3
800	824	+3.0
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee Richard

General Manager

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM

CLIENT: **ACTION UNITED ENVIRO SERVICES** ADDRESS: RM A 20/F., GOLDEN KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD,

KWAI CHUNG, N.T., HONG KONG WORK ORDER: HK1614292

SUB-BATCH:

HONG KONG LABORATORY: DATE RECEIVED: 11/04/2016 DATE OF ISSUE: 18/04/2016

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:

pH and Temperature

Description:

pH Meter

Brand Name:

AZ

Model No .: Serial No .:

AZ 8685 1064457

Equipment No.:

Date of Calibration: 18 April, 2016

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Fung Lim Chee, Richard

General Manager

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1614292

Sub-batch:

Date of Issue:

18/04/2016

Client:

ACTION UNITED ENVIRO SERVICES

Description:

pH Meter

Brand Name:

AZ

Model No .:

AZ 8685

Serial No .:

1064457

Equipment No .:

Date of Calibration: 18 April, 2016

Date of next Calibration:

18 July, 2016

Parameters:

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.9	-0.10
7.0	7.1	+0.10
10.0	10.0	0.00
	Tolerance Limit (pH Unit)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10	10.0	+0.0
20	20.5	+0.5
40	40.5	+0.5
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee Richard

General Manager

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street

Kwai Chung, N.T., Hong Kong T: +852 2610 1044

F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM

CLIENT: **ACTION UNITED ENVIRO SERVICES** ADDRESS: RM A 20/F., GOLD KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD,

KWAI CHUNG, N.T., HONG KONG. WORK ORDER: HK1614297

SUB-BATCH:

LABORATORY: HONG KONG DATE RECEIVED: 11/04/2016 18/04/2016

DATE OF ISSUE:

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:

Conductivity, Dissolved Oxygen, pH, Salinity, Temperature and Turbidity

Equipment Type:

Multifunctional Meter

Brand Name:

YSI

Model No .:

Professional DSS

Serial No .:

15H102620/15H103928

Equipment No.:

EQW018

Date of Calibration: 18 April, 2016

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Che

General Manager

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1614297

Sub-Batch:

0

Date of Issue:

18/04/2016

Client:

ACTION UNITED ENVIRO SERVICES

Equipment Type:

Multifunctional Meter

Brand Name:

YSI

Model No.:

Professional DSS

Serial No.:

15H102620/15H103928

Equipment No.: Date of Calibration:

18 April, 2016

EQW018

Date of next Calibration:

18 July, 2016

Parameters:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	141.3	-3.8
6667	6399	-4.0
12890	12596	-2.3
58670	55890	-4.7
	Tolerance Limit (%)	±10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.00	2.98	-0.02
5.06	4.93	-0.13
9.01	8.93	-0.08
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.08	+0.08
7.0	7.05	+0.05
10.0	10.01	+0.01
	Tolerance Limit (pH unit)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.08	100
10	9.95	-0.5
20	19.80	-1.0
30	29.89	-0.4
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager -

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: HK1614297

Sub-Batch:

Date of Issue: 18/04/2016

Client: ACTION UNITED ENVIRO SERVICES

Equipment Type:

Multifunctional Meter

Brand Name:

YSI

0

Model No.:

Professional DSS

Serial No.:

15H102620/15H103928

Equipment No.:

EQW018

Date of Calibration:

18 April, 2016

Date of next Calibration:

18 July, 2016

Parameters:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10	10.2	+0.2
20	21.0	+1.0
40	40.1	+0.1
	Tolerance Limit (°C)	±2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.2	
4	3.8	-5.0
40	37.0	-7.5
80	78.6	-1.8
400	377.1	-5.7
800	738.3	-7.7
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025: 2005 — General requirements for the competence 此實驗所符合ISO / IEC 17025: 2005 — 《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing

環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005.

本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué).

(見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處稅據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator

執行幹事 陳成城 Issue Date: 5 May 2009

簽發日期:二零零九年五月五日

Registration Number : HOKLAS 066 註冊號碼 :

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

Appendix G

Event and Action Plan

Event and Action Plan for Air Quality

Event	ET	IEC	ER	Action Contracto
Action Level				
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily.	Check monitoring data submitted by ET; Check Contractor's working method.	Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	1. Identify source;	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the ET on the effectiveness of the proposed remedial measures; 5. Monitor the implementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal i appropriate.
Limit Level				
Exceedance for one sample	investigate the causes of exceedance and propose remedial measures; 2. Inform ER, Contractor and EPD; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily; 5. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results.	Contractor on possible remedial measures; 4. Advise the ER on the effectiveness of the proposed remedial measures; 5. Monitor theimplementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Amend proposal i appropriate.
Exceedance for two or more consecutive samples		1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 4. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise	Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented;	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not
	and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	the ER accordingly; 5. Monitor the implementation of remedial measures.	5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Construction Noise

Event	ET	IEC	ER	Action Contractor
Action Level	1. Notify ER, IEC and Contractor; 2. Carry out investigation; 3. Report the results of investigation to the IEC, ER and Contractor; 4. Discuss with the IEC and Contractor on remedial measures required; 5. Increase monitoring frequency to check mitigation effectiveness.	Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures.	Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals.
Limit Level	1. Inform IEC, ER, Contractor and EPD; 2. Repeat measurements to confirm findings; 3. Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly.	1. Confirm receipt of notification of failure in writino: 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures; 5. If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated.	1. Take immediate action to avoid further exceedance: 2. Submit proposals for remedial actions to IEC and ER within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Event and Action Plan for Water Quality

EVENT	-	IEC	-	ACTION
Action level being exceeded by one sampling day	1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC and Contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC and Contractor; 6. Repeat measurement on next day of exceedance.	1. Discuss with ET and Contractor on the mitigation measures; 2. Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; 3. Assess the effectiveness of the implemented mitigation measures	1. Discuss with IEC on the proposed mitigation measures; 2. Make agreement on the mitigation measures to be implemented; 3. Assess the effectiveness of the implemented mitigation measures	CONTRACTOR 1. Inform the ER and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with ET and IEC and propose mitigation measures to IEC and ER; 6. Implement the agreed mitigation measures.
Action Level being exceeded by more than two consecutive sampling days	1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC and Contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methodics. 5. Discuss mitigation measures with IEC and Contractor; 6. Ensure mitigation measures are implemented; 7. Prepare to increase the monitoring frequency to daily; 8. Repeat measurement on next day of contract or secretare.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 2 working days. Implement the agreed mitigation measures.
Limit Level being exceeded by one sampling day	exceedance. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures	1. Inform the ER and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures.
Limit level being exceeded by more than one consecutive sampling days	Level. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures.	1. Discuss with IEC, ET and Contractor on the proposed mitigation measures; 2. Request Contractor to critically review the working methods; 3. Make agreement on the mitigation measures to be implemented; 4. Assess the effectiveness of the implemented mitigation measures; 5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level.	1. Inform the ER and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures; 7. As directed by the ER, to slow down or to stop all or part of the construction activities.

Appendix H

Impact Monitoring Schedule

Impact Monitoring Schedule for next Reporting Period – May 2016

	D.4.	Dust Mo	nitoring	NI - to - NI to -	W-4 OP4-
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
Sun	1-May-16				
Mon	2-May-16				
Tue	3-May-16	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Wed	4-May-16		AM4b, AM5, AM6, AM7b & AM8		
Thu	5-May-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Fri	6-May-16		AM1b, AM2, AM3 & AM9b		
Sat	7-May-16				All Water Quality Monitoring Locations
Sun	8-May-16				
Mon	9-May-16	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Tue	10-May-16		AM4b, AM5, AM6, AM7b & AM8		
Wed	11-May-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Thu	12-May-16		AM1b, AM2, AM3 & AM9b		
Fri	13-May-16	AM1b, AM2, AM3 & AM9b			All Water Quality Monitoring Locations
Sat	14-May-16				
Sun	15-May-16				
Mon	16-May-16		AM4b, AM5, AM6, AM7b & AM8		
Tue	17-May-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Wed	18-May-16		AM1b, AM2, AM3 & AM9b		
Thu	19-May-16	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Fri	20-May-16				
Sat	21-May-16		AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
Sun	22-May-16				
Mon	23-May-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Tue	24-May-16		AM1b, AM2, AM3 & AM9b		
Wed	25-May-16	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Thu	26-May-16				
Fri	27-May-16		AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
Sat	28-May-16	AM4b, AM5, AM6, AM7b & AM8			
Sun	29-May-16				
Mon	30-May-16		AM1b, AM2, AM3 & AM9b		
Tue	31-May-16	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations

Monitoring Day
Sunday or Public Holiday

Monitoring Location

	Air Quality	AM7b & AM8
Contract 2 (C2)	Construction Noise	NM5, NM6, NM7
	Water Quality#	WM3, WM3-Control, WM4, WM4-Control A & WM4-Control B
Contract 3 (C3)	Air Quality	AM9b

	Construction Noise	NM8, NM9 & NM10
	Water Quality	WM4, WM4-Control A & WM4-Control B
	Air Quality	AM1b, AM2 & AM3
Contract 5 (C5)	Construction Noise	NM1, NM2a
	Water Quality	WM1 & WM1-Control
	Air Quality	AM1b
Contract SS C505	Construction Noise	NM1
	Water Quality	WM1 & WM1-Control
	Air Quality	AM2, AM3, AM4b, AM5 & AM6
Contract 6 (C6)	Construction Noise	NM2a,NM3, NM4, NM5 & NM6
	Water Quality	WM1, WM1C, WM2a, WM2A-C, WM2B, WM2B-C, WM3, WM3-C
Contract 7 (C7)	Air Quality	AM1b
Contract 7 (C7)	Construction Noise	NM1

Impact Monitoring Schedule for next Reporting Period – June 2016

	Date	Dust Mo	onitoring	Noise Monitoring	Water Quality
	Date	1-hour TSP	24-hour TSP	Noise Wontoring	water Quanty
Wed	1-June-16		AM4b, AM5, AM6, AM7b & AM8		
Thu	2-June-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Fri	3-June-16				
Sat	4-June-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Sun	5-June-16				
Mon	6-June-16	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Tue	7-June-16		AM4b, AM5, AM6, AM7b & AM8		
Wed	8-June-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Thu	9-June-16				
Fri	10-June-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Sat	11-June-16	AM1b, AM2, AM3 & AM9b			
Sun	12-June-16				
Mon	13-June-16		AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
Tue	14-June-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Wed	15-June-16				All Water Quality Monitoring Locations
Thu	16-June-16		AM1b, AM2, AM3 & AM9b		
Fri	17-June-16	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Sat	18-June-16		AM4b, AM5, AM6, AM7b & AM8		
Sun	19-June-16				
Mon	20-June-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Tue	21-June-16				
Wed	22-June-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Thu	23-June-16	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	
Fri	24-June-16		AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
Sat	25-June-16	AM4b, AM5, AM6, AM7b & AM8			
Sun	26-June-16				
Mon	27-June-16		AM1b, AM2, AM3 & AM9b		
Tue	28-June-16	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Wed	29-June-16		AM4b, AM5, AM6, AM7b & AM8		
Thu	30-June-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations

Monitoring Day

Sunday or Public Holiday

Monitoring Location

violitioning Location		
	Air Quality	AM7b & AM8
Contract 2 (C2)	Construction Noise	NM5, NM6, NM7
	Water Quality#	WM3, WM3-Control, WM4, WM4-Control A & WM4-Control B
	Air Quality	AM9b
Contract 3 (C3)	Construction Noise	NM8, NM9 & NM10
	Water Quality	WM4, WM4-Control A & WM4-Control B
	Air Quality	AM1b, AM2 & AM3
Contract 5 (C5)	Construction Noise	NM1, NM2a
	Water Quality	WM1 & WM1-Control
	Air Quality	AM1b
Contract SS C505	Construction Noise	NM1
	Water Quality	WM1 & WM1-Control
	Air Quality	AM2, AM3, AM4b, AM5 & AM6
Contract 6 (C6)	Construction Noise	NM2a,NM3, NM4, NM5 & NM6
	Water Quality	WM1, WM1C, WM2a, WM2A-C, WM2B, WM2B-C, WM3, WM3-C
Contract 7 (C7)	Air Quality	AM1b
Contract 7 (C7)	Construction Noise	NM1

Appendix I

Database of Monitoring Result

24-hour TSP Monitoring Data

24-HR TSP	(µg/m²)		21	55	29	77	35		98	148	117	147	79		79	52	59	103	94		94	40	29	35	25		27	43	55	33	18		13	41	169
DUST WEIGHT	(g)		0.0471	0.1230	0.1505	0.1693	0.0775		0.1277	0.2531	0.1682	0.2230	0.1241		0.1616	0.1073	0.1203	0.2192	0.1362		0.1711	0.0721	0.1222	0.0646	0.0458		0.0385	0.0616	0.1075	0.0359	0.0232		0.0197	0.0543	0.2162
VEIGHT)	FINAL		2.9261	2.9644	3.0015	2.9831	2.9155		2.9953	3.0921	3.0277	3.0484	2.9631		3.0207	2.9624	2.9609	3.0342	2.9828		3.0694	2.9198	2.9610	2.8910	2.8899		2.9116	2.9072	2.9585	2.8522	2.8835		2.8757	2.9116	3.0574
FILTER WEIGHT (g)	INITIAL		2.8790	2.8414	2.8510	2.8138	2.8380		2.8676	2.8390	2.8595	2.8254	2.839		2.8591	2.8551	2.8406	2.8150	2.8466		2.8983	2.8477	2.8388	2.8264	2.8441		2.8731	2.8456	2.8510	2.8163	2.8603		2.8560	2.8573	2.8412
AIR VOLUME	(std m ³)		2289	2253	2260	2207	2246		1476	1708	1436	1521	1564		2038	2050	2055	2136	1455		1827	1821	1830	1820	1817		1450	1436	1939	1075	1258		1465	1324	1277
STANDARD FLOW RATE	(m ³ /min)		1.58	1.56	1.56	1.52	1.55		1.03	1.20	1.01	1.07	1.10		1.42	1.42	1.43	1.48	1.01		1.27	1.26	1.27	1.26	1.26		1.01	1.00	1.35	0.75	0.87		1.02	0.92	68.0
AVG AIR PRESS	(hPa)		1009.9	1009.8	1012	1007.9	1008.8		1009.9	1009.8	1012	1007.9	1008.8		1009.9	8.6001	1012	1007.9	1008.8		1011.4	1008.1	1011.2	1005.9	1006.4		1011.4	1008.1	1011.2	1005.9	1006.4		1011.4	1008.1	1011.2
AVG TEMP	(C)		28.4	25.1	24.5	27.5	28.8		28.4	25.1	24.5	27.5	28.8		28.4	25.1	24.5	27.5	28.8		25.8	26.6	24.8	26.5	27.5		25.8	26.6	24.8	26.5	27.5		25.8	26.6	24.8
ل _	AVG		45.0	44.0	44.0	43.0	44.0		30.0	35.0	29.0	31.0	32.0	•	46.0	46.0	46.0	48.0	34.0		40.0	40.0	40.0	40.0	40.0		30.0	30.0	40.5	22.0	26.0		34.5	32.0	31.0
CHART READING	MIN MAX		46	44	44	43	44		30	35	30	32	32	Village	48	46	46	48	34		40	40	40	40	40		30	30	41	22	26		35	32	32
	MIN		44	44	44) 43	44		30	35) 28	30	32	u Ling	44) 46) 46) 48	34) 40) 40) 40) 40) 40		30	30) 40) 22			34	32	30
Œ	(min)	0)	1449.00	1447.80	1449.60	1452.60	1451.40	ad	1428.00	1426.20	1422.60	1426.80	1427.40	Ta Kw	1440.00	1440.00	1440.00	1440.00	1440.00		1440.00	1440.00	1440.00	1440.00	1440.00		1440.60	1430.40	1440.00	1440.00	1440.00		1440.00	1440.00	1439.40
ELAPSED TIME	FINAL	Ha Village	11504.60	11528.73	11552.89	11577.10	11577.10 11601.29 1451.40	Hang Ro	7048.22	7071.99	7095.70	7119.48	7143.27	Station of	8163.04	8187.04	8211.04	8235.04	8259.04 1440.00	la Village	10122.78 10146.78 1440.00	10146.79 10170.79 1440.00	10170.79 10194.79 1440.00	10194.79 10218.79 1440.00	10218.79 10242.79 1440.00	e)	7985.10	8008.94	8056.93	8080.93	8104.93	nse	6590.33	6614.33	6638.32
ELA	INITIAL	Area, Tsung Yuen Ha Village	11480.45	11504.60	11528.73	11552.89	11577.10	ar Lin Ma	7024.42	7048.22	7071.99	7095.70	7119.48	re Service	8139.04	8163.04	8187.04	8211.04	8235.04	Nga Yiu H	10122.78	10146.79	10170.79	10194.79	10218.79	lage Hous	7961.09	7985.10	8032.93	8056.93	8080.93	Village House	6566.33	6590.33	6614.33
SAMPLE NUMBE	R	n Area, Ts	29332	29343	29352	29460	29510	e House ne	29331	29342	29351	29461	29511	vu Ling Fi	29333	29341	29350	29462	29512	no. 10B1	29452	29327	29344	29457	29506	Yeung Vil	29451	29326	29346	29459	29505			29345	29349
DATE		AM1b - Open	6-May-16	13-May-16	18-May-16	24-May-16	30-May-16	AM2 - Village House near Lin Ma Hang Road	6-May-16	13-May-16	18-May-16	24-May-16	31-May-16	AM3 - Ta Kwu Ling Fire Service Station of Ta Kwu Ling Village	6-May-16	13-May-16	18-May-16	24-May-16	31-May-16	AM4 - House no. 10B1 Nga Yiu Ha Village	4-May-16	10-May-16	16-May-16	21-May-16	27-May-16	AM5a - Ping Yeung Village House	4-May-16	10-May-16	16-May-16	21-May-16	27-May-16	AM6 - Wo Keng Shan	4-May-16	10-May-16	16-May-16

24-HR TSP	('m/g/m')	45	57		107	38	100	54	40		30	28	44	58	21		22	09	72	88	59
DUST WEIGHT	(g)	0.0548	0.0733		0.1354	0.0490	0.1306	0.0708	0.0490		0.0416	0.0455	6690.0	0.0948	0.0336		0.0273	0.0884	0.1036	0.1138	0.0732
	FINAL	2.8907	2.8989		2.9964	2.8808	2.9675	2.9022	2.8970		2.9039	2.8943	2.9178	2.9355	2.8496		2.8885	2.9318	2.9516	2.9462	2.9158
FILTER WEIGHT (g)	INITIAL	2.8359	2.8256		2.8610	2.8318	2.8369	2.8314	2.8480		2.8623	2.8488	2.8479	2.8407	2.8160		2.8612	2.8434	2.8480	2.8324	2.8426
AIR VOLUME	(std m ³)	1215	1293		1267	1305	1310	1303	1219		1383	1636	1574	1635	1632		1240	1480	1432	1292	1236
STANDARD FLOW RATE	(m³/min)	0.84	06.0		0.88	0.91	0.91	0.91	0.85		96.0	1.14	1.09	1.14	1.13		98.0	1.03	66.0	0.90	98.0
AVG AIR PRESS	(hPa)	1005.9	1006.4		1011.4	1008.1	1011.2	1005.9	1006.4		1011.4	1008.1	1011.2	6.5001	1006.4		1009.9	1009.8	1012	6.7001	1008.8
AVG TEMP	(°C)	26.5	27.5		25.8	26.6	24.8	26.5	27.5		25.8	26.6	24.8	26.5	27.5		28.4	25.1	24.5	27.5	29.8
L G	AVG	30.0	31.5		29.0	30.0	30.0	30.0	28.0		36.5	42.0	40.5	42.0	42.0		28.5	33.0	32.0	29.5	28.5
CHART READING	MIN MAX AVG	30	32		30	30	30	30	28		37	42	41	42	42		29	34	32	30	29
- X	MIN	0 30	0 31		0 28	0 30	0 30	0 30	0 28		98 0	0 42	0 40	0 42	0 42		0 28	0 32	0 32	0 29	0 28
ME	(min)	1440.6	1440.00		1440.0	1440.0	1440.0	1439.4	1440.0		1440.0	1440.00	1439.4	1440.00	1440.00		1440.0	1440.0	1440.0	1440.0	1440.0
ELAPSED TIME	FINAL	6662.33 1440.60	6686.33		15626.57	15650.57	15674.57	15698.56 1439.40	15722.56		9497.61 1440.00	9521.61	9545.60 1439.40	9605.14	9629.14	e No. 80	16936.37	16960.37	16984.37	17008.37	17032.37
ELA	INITIAL	6638.32	6662.33	e House	15602.57 15626.57 1440.00	15626.57 15650.57 1440.00	15650.57 15674.57 1440.00	15674.57	15698.56 15722.56 1440.00	ge No. 4	9473.61	9497.61	9521.61	9581.14	9605.14	lage Hous	16912.37 16936.37 1440.00	16936.37 16960.37 1440.00	16960.37 16984.37 1440.00	16984.37 17008.37 1440.00	17008.37 17032.37 1440.00
SAMPLE NUMBE	R	29456	29464	ung Villag	29339	29340	29347	29458	29507	Tsai Villa	29335	29339	29348	29508	29509	Wa Po Vil	29328	29338	29353	29463	29513
DATE		21-May-16	27-May-16	AM7b - Loi Tung Village House	4-May-16	10-May-16	16-May-16	21-May-16	27-May-16	AM8 - Po Kat Tsai Village No. 4	4-May-16	10-May-16	16-May-16	21-May-16	27-May-16	AM9b - Nam Wa Po Village House No. 80	6-May-16	13-May-16	18-May-16	24-May-16	30-May-16

Construction Noise Monitoring Results, dB(A)

façade correction	_	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA		AN		NA	NA NA	NA NA	NA NA NA	NA NA NA NA	NA N	NA N	NA N	NA N	AN NA N	NA N	NA N	N N N N N N N N N N N N N N N N N N N	AN NA N	NA N	NA N	AN A
Leq30		62	<i>L</i> 9	52	72	<i>L</i> 9		62	<i>L</i> 9	9	69	99		63		64	\perp		+													
T90		54.8	57.0	50.5	9.99	63.8		61.1	58.1	59.4	67.7	49.4		56.8	755	t.	56.4	56.4	56.4	56.4	56.4 56.7 55.7 56.0 56.5	56.7 56.0 56.0 56.0 56.5 56.5 58.0	56.4 56.7 56.5 56.5 58.0 58.0 58.0	56.4 55.7 56.0 56.5 56.5 58.0 58.0 55.4	56.4 55.7 56.0 56.5 58.0 58.0 55.4 55.4	56.4 56.4 56.5 56.5 56.5 58.0 58.0 58.0 58.0 58.0 58.0	56.4 56.4 56.5 56.5 56.5 58.0 58.0 55.4 48.0 53.0 52.5	56.4 56.5 56.5 56.5 56.5 56.5 56.5 56.5	56.4 56.7 56.0 56.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0 58	56.4 56.4 56.5 56.5 56.5 58.0 58.0 58.0 58.0 58.0 58.0 58.0 58	56.4 56.4 56.5 56.5 56.5 56.5 56.5 56.5	56.4 56.7 56.5 56.5 58.0 58.0 58.0 58.0 58.0 58.0 58.0 58
L10		0.99	9.79	52.0	78.9	66.1		68.3	64.1	68.2	8.69	59.1		63.7	57.5		64.3	64.3	64.3	64.3 62.0 63.0	64.3 62.0 63.0 62.5	64.3 62.0 63.0 62.5 63.1	64.3 62.0 63.0 63.1 63.1 65.7	64.3 62.0 63.0 63.1 63.1 65.7	64.3 62.0 63.0 62.5 63.1 65.7	62.0 62.0 63.0 62.5 63.1 65.7 56.0 59.5	62.0 62.0 63.0 63.1 63.1 65.7 65.7 65.0 56.0	62.0 63.0 63.0 63.1 63.1 65.7 65.7 66.7 56.0 58.0	62.0 62.0 63.0 63.1 63.1 63.1 65.7 65.7 65.7 56.0 56.0 58.0	62.0 62.0 63.0 62.5 63.1 63.1 65.7 65.0 56.0 56.0 58.0	62.0 62.0 63.0 62.5 63.1 63.1 65.7 65.0 59.5 58.0 62.0	64.3 62.0 63.0 63.1 63.1 63.1 65.7 65.7 60.5 58.0 58.0 62.0 62.0 63.1 63.1 63.1 63.1 63.1 63.1 63.1 63.1
6 th Leq _{5min}		63.1	66.1	52.1	74.6	65.5		64.9	62.5	64.9	0.69	56.0		6.09	58.7		62.4	62.4	62.4	62.4 61.1 63.6	62.4 61.1 63.6 61.3	62.4 61.1 63.6 61.3 61.7	62.4 61.1 63.6 61.3 61.7 62.1	62.4 61.1 63.6 61.3 61.7 62.1	62.4 61.1 63.6 61.3 61.7 62.1	62.4 61.1 63.6 61.3 61.7 62.1 52.9	62.4 61.1 63.6 61.3 61.7 62.1 62.1 58.7	62.4 61.1 63.6 61.3 61.7 62.1 62.1 52.9 58.7 58.3	62.4 61.1 63.6 61.3 61.7 62.1 62.1 52.9 58.7 58.3	62.4 61.1 63.6 61.3 61.7 62.1 52.9 58.3 58.3 56.6	62.4 61.1 61.1 61.3 61.7 62.1 62.1 58.7 58.3 58.3 56.6	62.4 61.1 63.6 61.3 61.7 62.1 62.1 52.9 58.7 58.3 58.3 56.6 66.1
06T		54.3	56.3	49.9	58.8	64.3		60.7	54.9	59.3	67.5	49.5		56.4	52.5		58.0	58.0	58.0	56.1	58.0 56.1 56.3 57.0	58.0 56.1 56.3 57.0 55.6	58.0 56.1 56.3 57.0 55.6 55.1	58.0 56.1 56.3 57.0 55.6 55.6	58.0 56.1 56.3 57.0 55.6 55.1	58.0 56.1 56.3 57.0 55.6 55.1 50.0	58.0 56.1 56.3 57.0 55.6 55.1 55.0 53.0	58.0 56.1 56.3 56.3 55.6 55.0 50.0 53.0 53.0	58.0 56.1 56.3 56.3 57.0 55.6 55.1 50.0 53.0 53.0	58.0 56.1 56.3 57.0 55.6 55.1 55.0 53.0 53.0 53.0	58.0 56.1 56.3 56.3 57.0 55.6 55.1 55.0 53.0 53.0 53.0 53.0	58.0 56.1 56.3 56.3 57.0 55.0 53.0 53.0 53.0 51.0 52.5 46.0
L10		67.1	70.3	51.6	77.4	9.59		63.5	65.0	68.4	6.07	59.7		65.1	66.5		64.3	64.3	64.3	60.1	64.3 60.1 67.1 63.0	64.3 60.1 67.1 63.0 60.0	64.3 60.1 67.1 63.0 60.0 62.7	64.3 60.1 67.1 63.0 60.0 62.7	64.3 60.1 67.1 63.0 60.0 62.7	64.3 60.1 67.1 63.0 60.0 62.7 58.5	64.3 60.1 67.1 63.0 60.0 62.7 58.5 59.0	64.3 60.1 67.1 67.1 62.7 58.5 58.0 58.0	64.3 60.1 67.1 66.0 62.7 58.5 59.0 65.0	64.3 60.1 67.1 63.0 60.0 62.7 58.5 59.0 65.0	64.3 60.1 67.1 67.1 62.7 58.5 58.0 65.0 65.0 65.0 65.0	64.3 60.1 67.1 67.1 66.0 62.7 58.5 58.0 65.0 65.0 68.0 68.0
5 th Leq _{5min}		63.6	0.69	51.0	73.2	62.9		62.2	61.1	64.9	69.5	56.7		63.7	62.7	61.8	0.10	57.9	57.9	57.9	57.9 65.6 61.7	65.6 60.9	65.6 65.6 61.7 60.9 60.1	65.6 65.6 61.7 60.9 60.1	65.6 65.6 60.9 60.9 60.1	65.6 66.6 60.9 60.1 60.1 55.7	65.6 65.6 60.9 60.1 60.1 55.7 56.8	57.9 65.6 60.9 60.1 60.1 55.7 55.7 56.8 60.3	65.6 66.6 60.9 60.1 60.1 55.7 56.8 60.3	65.6 66.6 60.1 60.1 60.1 55.7 55.7 60.3 60.3	57.9 66.6 60.9 60.1 60.1 55.7 56.8 60.1 60.3 60.3	57.9 65.6 60.9 60.1 60.1 55.7 56.8 60.3 60.3 60.3 60.3 60.3 60.3 60.3 60.3
L90		54.7	8.99	50.0	55.5	64.4		5.95	54.5	59.1	67.3	49.6		56.1	53.5	9 95	2.0	55.8	55.8	55.8	55.8 56.4 57.0	55.8 56.4 57.0 56.9	55.8 56.4 57.0 56.9 55.3	55.8 56.4 57.0 56.9 56.9	55.8 56.4 57.0 56.9 55.3	55.8 56.4 57.0 56.9 56.9 56.0 50.0	55.8 56.4 57.0 56.9 55.3 50.0 53.0	55.8 56.9 57.0 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9	55.8 56.4 57.0 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9	55.8 56.4 56.9 56.9 56.9 56.9 56.0 56.0 56.0 56.0 56.0	55.8 56.9 57.0 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9	55.8 56.4 57.0 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9
L10		0.99	9.89	51.7	7.97	2.99		9.59	62.6	68.5	71.0	59.7		62.4	66.5	63.5	;	61.1	61.1	61.1	61.1 60.7 62.5	61.1 60.7 62.5 62.5	60.7 60.7 62.5 62.5 64.1	60.7 60.7 62.5 62.5 64.1	61.1 60.7 62.5 62.5 64.1 57.0	60.7 60.7 62.5 62.5 64.1 57.0	60.7 60.7 62.5 62.5 64.1 57.0 59.5	60.7 60.7 62.5 62.5 64.1 57.0 57.0 59.5 66.5	60.7 60.7 62.5 62.5 64.1 57.0 59.5 66.5	60.7 60.7 62.5 62.5 64.1 57.0 57.0 59.5 66.5 60.5	60.7 60.7 62.5 62.5 64.1 59.5 66.5 66.5 66.5	60.7 60.7 60.5 60.5 60.5 60.5 60.5 60.5 60.5 65.0
4 th Leq _{5min}		62.3	66.1	51.2	71.7	9.59		62.7	60.4	66.2	69.4	55.8		60.5	65.1	9 09	> > >	60.3	60.3	60.3	60.3 64.8 61.5	60.3 64.8 61.5 62.1	64.8 64.8 61.5 62.1 61.7	60.3 64.8 61.5 62.1 61.7	60.3 60.3 61.5 62.1 61.7 61.7	60.3 60.3 61.5 62.1 61.7 61.7 54.3	60.3 60.3 64.8 61.5 62.1 61.7 61.7 54.3	60.3 60.3 60.3 61.5 62.1 61.7 61.7 62.9	60.3 60.3 60.3 61.5 62.1 61.7 61.7 62.9 62.9	60.3 60.3 60.3 61.5 62.1 61.7 54.3 57.7	60.3 60.3 60.3 61.5 61.7 61.7 54.3 57.0 62.9 62.9	60.3 60.3 60.3 61.5 62.1 61.7 62.9 62.9 62.0 62.0
L90 1		54.7	54.1	50.1	56.3	65.2		53.3	57.9	59.4	0.89	51.1		56.4	54.5	56.1		55.7	55.7	55.7	55.7 56.9 56.5	55.7 56.9 56.5 58.5	55.7 56.9 56.5 58.5 55.8	55.7 56.9 56.5 58.5 55.8	56.9 56.5 58.5 58.5 55.8 48.5	55.7 56.9 56.5 58.5 55.8 48.5 58.0	55.7 56.9 56.5 58.5 58.5 55.8 48.5 58.0	56.9 56.5 56.5 58.5 55.8 55.8 58.0 58.0 58.0	55.7 56.9 56.5 58.5 58.8 55.8 48.5 58.0 52.5 47.5	56.9 56.9 56.5 58.5 58.5 55.8 48.5 52.5 52.5 54.0	55.7 56.9 56.5 58.5 58.6 58.0 58.0 58.0 52.5 52.5 54.0	55.7 56.9 56.5 58.5 58.8 58.0 58.0 52.5 47.5 47.5
L10		63.7	6.79	51.7	75.6	9.69		61.9	72.5	68.2	9.69	59.7		63.1	60.5	68.3		59.5	59.5	59.5	59.5 61.1 63.0	59.5 61.1 63.0 65.3	59.5 61.1 63.0 65.3 66.0	59.5 61.1 63.0 65.3 66.0	65.3 66.0 53.0	61.1 63.0 65.3 66.0 53.0 67.5	61.1 63.0 65.3 66.0 53.0 67.5	59.5 61.1 63.0 65.3 66.0 53.0 67.5 61.0	59.5 61.1 63.0 65.3 66.0 53.0 67.5 61.0	61.1 63.0 65.3 66.0 66.0 67.5 61.0 53.0	59.5 61.1 63.0 65.3 66.0 67.5 61.0 61.0 53.0 62.0	59.5 61.1 63.0 65.3 66.0 67.5 61.0 61.0 53.0 62.0 68.5
3 nd Leq _{5min}		9.09	64.1	51.0	71.5	67.4		59.3	9.89	64.7	0.69	56.5		9.09	68.3	8.49	777	7./0	/:/5	62.1	62.1	62.1 61.7 65.4	62.1 65.4 65.7 62.7	62.1 62.1 65.4 62.7	62.1 61.7 65.4 62.7 62.7	62.1 62.1 65.4 62.7 63.3	62.1 61.7 65.4 62.7 63.7 63.7	62.1 61.7 62.7 62.7 63.7 59.4 50.2	62.1 65.4 65.4 62.7 63.3 53.3 63.7 59.4	62.1 65.4 65.4 62.7 53.3 59.4 50.2	62.1 61.7 65.4 62.7 63.7 63.7 59.8 59.8	┤├┼┼┼ ┨┝╂┼╂┤┝╂┼
160 I		64.5	54.7	8.64	53.4	67.5		54.4	57.0	59.7	9.79	9.09		55.8	52.0	56.1	55.1			56.2	56.2	56.2 56.0 57.0	56.2 56.0 57.0 55.0	56.2 56.0 57.0 55.0	56.2 56.0 57.0 55.0	56.2 56.0 57.0 55.0 48.0	56.2 56.0 57.0 55.0 55.0 48.0 57.0	56.2 56.0 57.0 57.0 55.0 48.0 57.0 52.0	56.2 56.0 57.0 55.0 48.0 57.0 57.0 49.0	56.2 56.0 57.0 55.0 55.0 57.0 57.0 57.0		
L10		63.1	0.89	53.8	71.9	69.5		62.4	74.5	67.4	8.02	58.2		64.7	61.5	62.0	59.5			67.3	67.3	67.3 62.5 67.2	67.3 62.5 67.2 63.1	67.3 62.5 67.2 63.1 theast)	67.3 62.5 67.2 63.1 theast)							
2 nd Leq _{5min}	3	0.09	64.2	52.1	9.89	68.5	Road	59.5	6.07	65.0	69.5	54.2		63.3		-				64.5	64.5			64.5 61.2 67.7 60.7	64.5 61.2 67.7 60.7 cing nor	64.5 61.2 67.7 60.7 cing nor 55.1	64.5 61.2 67.7 60.7 cing nor 55.1 62.3	64.5 61.2 67.7 60.7 60.7 55.1 62.3 63.1	64.5 61.2 67.7 60.7 60.7 55.1 62.3 63.1	64.5 61.2 67.7 60.7 60.7 55.1 63.1 63.1	64.5 61.2 67.7 60.7 60.3 55.1 63.1 57.9 59.5	64.5 61.2 60.7 60.7 60.7 62.3 63.1 57.9 59.5 63.8
L90	se No. 6	53.0	54.4	50.1	52.7	67.1	Hang F	54.2	60.3	57.9	67.4	52.6		56.4	51.5	55.8	55.8		e	e 56.8	56.8 55.5	56.8 55.5 57.0	56.8 55.5 57.0 55.2	56.8 55.5 57.0 55.2	56.8 55.5 57.0 55.2 35.2 49.5	56.8 55.5 57.0 55.2 1çade fa 49.5 56.5	56.8 55.5 57.0 55.2 35.2 36.5 56.5	56.8 55.5 57.0 55.2 55.2 49.5 49.5 56.5 56.5	56.8 55.5 57.0 57.0 55.2 49.5 56.5 56.5 50.5	56.8 55.5 57.0 55.2 30.3 49.5 56.5 56.5 56.5 56.5 56.5	56.8 55.5 57.0 57.0 55.2 49.5 56.5 56.5 56.5 56.5 56.5 56.5 56.5 5	56.8 55.5 55.2 55.2 55.2 49.5 56.5 56.5 56.5 56.5 56.5 56.5 56.5 5
L10	age Hou	63.1	67.4	53.7	75.5	72.1	Lin Ma	6.09	72.6	8.99	71.1	56.2	House	67.7	61.0	64.7	0.09		ge Hous	ge Hous	63.5 62.5	ge Hous 63.5 62.5 62.4	63.5 62.5 62.4 63.8	ge Hous 63.5 62.5 62.4 63.8 Fouse (f	63.5 62.5 62.4 62.4 63.8 10use (ft	63.5 62.5 62.4 62.4 63.8 Flouse (ft 54.0	63.5 62.5 62.4 62.4 63.8 10use (fa 54.0 63.5	63.5 62.5 62.4 62.4 63.8 10use (fi 54.0 63.5 58.0	63.5 62.5 62.5 62.4 63.8 10use (f. 54.0 63.5 58.0 58.0	63.5 62.5 62.4 62.4 63.8 63.8 54.0 63.5 58.0 58.0 56.5	63.5 62.5 62.5 62.4 63.8 10use (fi 54.0 63.5 58.0 58.0 56.5 61.5 69.0	63.5 62.5 62.5 62.4 63.8 63.8 63.5 63.5 58.0 58.0 58.0 63.5 69.0
1st Leqsmi	Ha Vill	59.7	6.89	52.0	71.2	70.0	se near	60.2	69.2	63.1	6.69	54.4	/illage l	64.8	58.2	63.4	60.1	20.02	an Villa	an Villa 64.2	64.2 60.9	an Villa 64.2 60.9 65.7	64.2 60.9 65.7 61.6	64.2 64.2 60.9 65.7 61.6	an Villa 64.2 60.9 65.7 61.6 7illage F	an Villa 64.2 60.9 65.7 61.6 7illage F 52.4	an Villa 64.2 66.9 65.7 65.7 61.6 71llage F 52.4 61.9 67.7	an Villa 64.2 60.9 60.9 61.6 71llage F 52.4 61.9 61.9 65.7 65.7 61.9 61.9 65.7	64.2 66.9 60.9 61.6 61.6 71llage I 52.4 61.9 57.4	an Villa of 64.2 64.2 660.9 65.7 61.6 61.9 61.9 61.9 67.4 56.7 56.7 56.7 56.7 59.4	an Villa 64.2 660.9 660.9 65.7 65.7 61.9 61.9 57.4 56.7 56.7 66.9 66.9 66.9	an Villa 64.2 66.9 66.9 65.7 61.6 61.9 61.9 65.7 52.4 56.7 56.7 56.7 56.9 66.9 66.9 66.9
Start Time	g Yuen	11:35	13:37		10:35	11:22	nge Hou	10:56	14:17	12:50		11:32	Yeung V	13:04	13:45	10:47			eng Sh	eng Sha 10:10	lo:10 14:46	eng Sha 10:10 14:46 13:43	eng Sha 10:10 14:46 13:43 10:11	eng Sha 10:10 14:46 13:43 10:11 Veung N	ceng Sha 10:10 14:46 13:43 10:11 Veung V	ceng Sha 10:10 14:46 13:43 10:11 Veung V 9:22 9:22	ceng Sha 10:10 14:46 13:43 10:11 Veung V 9:22 9:22 9:40	eng Sha 10:10 14:46 13:43 10:11 10:11 9:22 9:22 9:22 9:20	eng Sha 10:10 14:46 13:43 10:11 7 (eung V 9:20 9:40 9:20 9:20	eng Sha 10:10 14:46 13:43 10:11 10:11 9:20 9:40 9:20 9:20 9:20	eng Sha 10:10 14:46 13:43 10:11 10:11 9:22 9:20 9:20 9:20 9:20	eng Sha 10:10 14:46 13:43 10:11 10:11 9:20 9:40 9:40 9:20 9:20 9:20 9:20 11:29 10:04 10:04
Date	NM1 - Tsung Yuen Ha Village House No. 63	3-May-16	9-May-16	19-May-16 13:25	25-May-16 10:35	31-May-16	NM2a - Village House near Lin Ma Hang Road	3-May-16	9-May-16	19-May-16	25-May-16 11:10	31-May-16 11:32 54.4	NM3 - Ping Yeung Village House	5-May-16 13:04 64.8	11-May-16 13:45 58.2	17-May-16 10:47 63.4	23-May-16 10:57		I4 - Wo K	NM4 - Wo Keng Shan Village House 5-May-16 10:10 64.2 63.5 5	IM4 - Wo K 5-May-16 11-May-16	5-May-16 5-May-16 11-May-16 17-May-16	NM4 - Wo Keng Sh 5-May-16 10:10 11-May-16 14:46 17-May-16 13:43 23-May-16 10:11	NM4 - Wo Keng Shan Village House 5-May-16 10:10 64.2 63.5 56.8 64.5 67.3 11-May-16 14:46 60.9 62.5 55.5 61.2 62.5 17-May-16 13:43 65.7 62.4 57.0 67.7 67.2 23-May-16 10:11 61.6 63.8 55.2 60.7 63.1 NM5- Ping Yeung Village House (façade facing northeast)	5-May-16 11-May-16 17-May-16 17-May-16 23-May-16 NMS- Ping 5-May-16	5-May-16 11-May-16 17-May-16 17-May-16 23-May-16 5-May-16 5-May-16	5-May-16 11-May-16 17-May-16 17-May-16 23-May-16 5-May-16 11-May-16	5-May-16 11-May-16 17-May-16 17-May-16 23-May-16 S-May-16 11-May-16 17-May-16 23-May-16	5-May-16 10:10 64.2 63.5 11-May-16 14:46 60.9 62.5 17-May-16 13:43 65.7 62.4 23-May-16 10:11 61.6 63.8	5-May-16 11-May-16 17-May-16 17-May-16 23-May-16 5-May-16 17-May-16 17-May-16 17-May-16 53-May-16 53-May-16	5-May-16 10:10 11-May-16 14:46 17-May-16 13:43 23-May-16 10:11 MM5-Ping Yeung V 5-May-16 9:22 11-May-16 9:20 17-May-16 11:29 23-May-16 9:20 23-May-16 11:29 23-May-16 10:04 5-May-16 10:04	5-May-16 10:10 11-May-16 14:46 17-May-16 13:43 23-May-16 10:11 NM5-Ping Yeung V 5-May-16 9:22 11-May-16 9:20 17-May-16 11:29 23-May-16 9:20 NM6-Tai Tong Wt 5-May-16 10:04 11-May-16 10:04

_																							$\overline{}$
façade correction		NA	NA	NA	NA		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA		09	<i>L</i> 9	99	62	09
Leq30		64	9	61	64		58	69	69	58	54		62	61	89	62	69		57	64	63	69	57
T90		45.5	50.0	46.0	62.5		52.7	51	48.5	48	44		58.2	57.5	60.5	57.0	55.5		54.3	59.0	56.5	56.5	52.0
L10		57.5	63.5	63.5	0.69		63	62	56.5	56.5	65		64.5	61.5	0.69	63.0	59.5		57.7	65.5	62.5	61.0	59.5
6 th Leq _{5min}		58.7	62.3	6.69	0.79		58.7	58.5	56.7	56.2	53.3		61.5	59.3	66.4	9.09	57.7		8.99	63.7	60.4	8.09	56.8
06T		52.5	47.0	46.0	62.0		53.1	52	49.5	49	44.5		58.4	57.0	60.5	58.0	55.5		55.6	59.0	56.5	55.5	51.5
L10		66.5	62.0	63.5	69.5		64.4	64.5	64.5	64.5	54.5		63.3	61.0	71.0	63.0	57.0		58.1	69.5	60.5	60.5	64.0
5 th Leq _{5min}		62.7	57.9	0.09	9.99		59.5	6.65	59.7	59.3	50.8		60.1	60.4	0.89	61.6	58.5		57.4	65.3	59.0	59.4	60.3
06T		53.5	48.5	46.5	57.5		53.4	51.5	49	49.5	45		58.5	58.0	62.5	57.5	55.5		54.1	0.09	58.0	55.5	50.0
L10		66.5	61.5	64.5	61.5		64.5	09	64.5	64	09		63.5	62.0	71.5	64.0	58.5		57.7	71.0	62.0	59.0	59.0
4 th Leq _{5min}		65.1	57.1	0.09	60.7		58.5	58.4	58.9	58.5	54.8		0.09	62.5	68.5	61.9	6.09		8.99	9.99	9.09	58.1	55.8
T90		54.5	50.0	50.0	57.0		52.5	52	53	49	47.5		59.7	58.0	62.0	58.0	55.5		54.3	60.5	57.5	55.5	50.0
L10		68.5	60.5	0.79	63.0		63.8	63.5	99	60.5	69		64.7	61.5	71.5	65.5	0.09		57.4	65.0	65.0	0.09	57.0
3nd Leq _{5min}		68.3	57.5	63.1	61.8		57.6	60.5	61.3	57.7	54.4		62.9	59.7	68.5	62.7	58.0		56.1	63.3	64.2	58.4	54.3
06T		52.0	51.0	46.5	59.0		52.9	52.5	53	49	48		59.4	57.0	62.0	58.5	49.5		54.6	59.5	58.5	55.5	52.5
L10		61.5	65.5	58.5	64.0		63.7	63	63.5	64.5	53.5		63.5	62.0	71.5	64.5	57.0		58.1	0.99	0.89	60.5	61.5
2 nd Leqsmin		59.4	61.8	55.9	62.2		58.5	59.7	59.5	58.4	52.2		61.4	60.5	68.4	60.1	9.09		56.5	63.8	65.1	58.6	58.6
T90		51.5	60.5	53.5	57.5		51.6	52	52	65	5.64	lage	60.3	57.5	62.5	5.65	49.0	No. 80	55.4	57.5	58.0	5.95	53.5
L10		61.0	73.0	63.5	61.5	Hang	61.4	57.5	57.5	61	59.5	Tau Vill	9.69	61.0	71.0	65.0	56.0	e House	59.0	61.5	0.69	60.5	56.5
1 st Leq _{5mi}	Village	58.2	71.6	61.3	59.9	se, Tong	56.7	56.1	56.5	56.9	57.3	se, Kiu	10:48 65.6	61.9	68.4	62.9	54.4	o Villag	57.9	60.2	64.9	59.1	55.5
Start Time	nt Tsai	13:01	11:05	13:00	13:09	e Hous	10:05	10:12	11:21	9:51	11:18	e Hous	10:48	10:55	10:39	10:34	10:32	Wa P	13:12	15:59	9:52	15:51	13:00
Date	NM7 - Po Kat Tsai Village	5-May-16 13:01	11-May-16 11:05	17-May-16 13:00	23-May-16 13:09	NM8 - Village House, Tong Hang	3-May-16	9-May-16	19-May-16 11:21	25-May-16	31-May-16 11:18 57.3	NM9 - Village House, Kiu Tau Village	3-May-16	9-May-16	19-May-16 10:39	25-May-16 10:34	31-May-16 10:32	NM10 - Nam Wa Po Village House No. 80	3-May-16	9-May-16	19-May-16	25-May-16	31-May-16 13:00

Water Quality Monitoring Data for Contract 5, 6 and SS C505

Date	3-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (mg/L)	1g/L)	(%) od	(%)	Turbidit	ity (NTU)	d	рН	u)SS	SS(mg/L)
() () () ()	11.10	76.0	27.9	0.40	7.85	7.0	100.2	0	9.4	0.0	8	0	8	0
	11:10	+c.0	27.9	6.72	7.78	0./	99.5	79.9	9.3	ر. د.	8	0.0	∞	0.0
14/41	10.60	20.0	27.4	17.7	7.54	2 6	94.8	0.1	39.5	707	8.1	0	54	73 5
TIAIAA	10.39	0.20	27.4	4.12	7.61	0.7	95.4	73.1	40.8	40.7	8.1	0.1	53	22.3

Date	5-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (mg/L)	ug/L)	(%) OO	(%)	Turbidity (NTU)	(NTU)	d	рН	u)SS	SS(mg/L)
7 1744	7	76.0	28.4	7 00	7.3	7.0	94.0	0.70	8.8	,	6	c	8	0
VVIVI I-C	15:10	0.54	28.4	20.4	7.3	c./	94.0	94.0	9.4	9.1	6	9.0	8	0.0
10,00	15.00	90.0	29.5	רטר	6.91	0	90.2		22.0	0.66	9.1	,	40	0 00
TIAIAA	00:61	0.20	29.2	73.67	6.91	٥.9	90.2	90.2	23.9	73.0	9.1	Э.1	38	0.80

Date	7-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	(1/6w) oa	(T/bı	(%) oa	(%)	Turbidity (NTU)	(NTU)	ď	ЬН	u)SS	SS(mg/L)
7,87843	11.30	oc 0	27.3	376	7.76	7.0	98.0	9 00	9.7	o	9.3	0.0	7	7 5
	11:39	0.20	27.7	C:/7	7.84	0./	99.1	90.0	6.6	0.0	9.3	ر. ن	8	C:/
10/10/1	11.72	0 10	26.9	0 30	7.51	7 5	94.0	9 60	19.6	10.7	9.4	7	30	300
TIAIAA	11.23	O.17	26.8	20.3	7.44	C./	93.1	93.0	18.7	13.7	9.4	7.4	67	c.67

Date	9-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	(mg/L)	J/GL	(%) OO	(%)	Turbidity (NTU)	(NTU)	ď	рН	u)SS	SS(mg/L)
C 174741	00.61	76.0	28.6	200	8	0	103.1	1001	15.0	7 1	9.1	,	10	
)-TI _M IM	14:00	4°C.0	28.6	70.0	8	0.0	103.1	103.1	15.3	7.61	9.1	у.т	6	ر. د.
10,00	13.61	000	29.2	, 0,	26'9	7.0	91.4	5	31.2	21.7	8.9	0 0	40	0 07
TIAIAA	15:55	0.20	29.2	7.67	6.97	0./	91.4	91.4	31.6	51.4	8.9	o.0	40	40.0
			1											

	SS(mg/L)
	Нd
	Turbidity (NTU)
	(%) OQ
	DO (mg/L)
	Temp (oC)
	Depth (m)
11-May-16	Time
Date	Location

LI C	0.0	0.00	20.0
8	9	30	30
,	Э.1	0 0	6.0
9.1	9.1	8.9	8.9
c	9.9	7 00	4.02
9.5	10.4	20.1	20.7
100	93.I	0 10	94.0
93.1	93.1	94.8	94.8
7 7	/./	7.0	7.9
7.72	7.72	7.87	7.88
7 7.0	24./	N NC	24.4
24.7	24.7	24.4	24.4
70.0	0.34	00.0	0.29
20.01	10.24	10.1	10.13
()		14/4/1	TIAIAA

Date	13-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	(mg/L)	(J/Gı	(%) oa	(%)	Turbidit	rurbidity (NTU)	d	Hd	ı)ss	SS(mg/L)
()	10.30	70.0	26.5	3,00	8.31	CO	102.5	100	8.9	c	9.1	•	8	G
VVIVI I-C	10:30	0.54	26.5	70.5	8.31	0.5	102.5	102.5	9.4	3.2	9.1	Э.Т		0.0
14/6/1	10.25	<i>3</i> C 0	27.8	0.40	7.71	7.7	98.2	6 00	42.3	N CV	8.5	9 6	51	-
TIAIAA	10.33	0.20	27.8	0.72	7.71	/./	98.2	20.7	42.5	47.4	8.5	0.0		0.10

Date	17-May-16													
ocation .	Time	Depth (m)	Temp (oC)	(oc)	DO (mg/L)	ng/L)	(%) oa	(%)	Turbidity (NTU)	(UTN)	d	рН	SS(n	SS(mg/L)
(11.17	10.0	24.3	0.70	8.08	6	8.96	0.7	11.4	7	8.8	o	8	7 2
)-III/	11:17	0.23	24.3	24.3	8.13	0.1	97.3	97.0	10.7	11:11	8.8	o. o	7	c: /
-	10.67	0 10	24.6	2 1/0	7.36	7.2	88.4	600	69.7		8.7	7 0	72	1
TIAIN	10.37	01.10	24.6	24.0	7.29	7.7	87.8	1.00	68.2	0.60	8.7	0./	69	C.0.7

Date	#18-May-16									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	(%) OQ	Turbidity (NTU)	TU)	Н	SS(mg/L)	g/L)
0 1999	10.33	00.0					75 1		39	0.00
)-T \/\	10:33	0.29				25.7	1.		39	0.60
10,001	10:1	0 10				35.6			45	7 17
VVIVIT	10:14	0.10					0.00		45	45.0

Date	19-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	(T/6w) OG	(J/Gı	(%) OG	(%)	Turbidit	rurbidity (NTU)	ď	ЬH	u)SS	SS(mg/L)
()	17.24	0 31	24.7	0 7 0	8.17	CO	88.9	1 00	26.5	ר זר	9.3	c	11	-
O-TIAIN	12:24	0.51	24.8	24.0	8.14	7.0	88.1	00.0	23.8	7.67	9.3	y.5	12	C'TT
14/641	10.07	7	24.3	0.70	7.43	7.7	98.2	0	72.1	7	6	d	128	7
TIAIAA	12:07	0.21	24.3	24.3	7.38	7.4	97.8	96.0	0.69	0.07	6	9.0	126	127.0

Date	#20-May-16									
Location	Time	Depth (m)	Depth (m) Temp (oC)	DO (mg/L)	(%) OQ	Turbidity (NTU)	TU)	Hd	น)SS	SS(mg/L)
(14444	7	20.0				8.5	-		m	Ċ
VIVIT-C	11:00	0.27					٥./		က	3.0
10/04	7	0				12.9	- 7		15	L
TIAIAA	11:19	0.19					12.4		15	0.CI

Date	21-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	(mg/L)	(J/GL	(%) oa	(%)	Turbidit	urbidity (NTU)	Hd	н	u)SS	SS(mg/L)
C 174/4/	20.0	76.0	24	7 7 5	7.98	0	96.1	10	42.1	710	8.9	0 0	28	37.5
VVIVIT-C	9:07	0.57	25	24.0	7.94	0.0	95.7	9.0%	41.1	41.0	8.9	o.9	38	C:/C
14/14/1	70.0	70	25	7 7 7	9'.	2 6	92.1	, ,	47.1	0.07	8.5	10	41	7. 7.
TIAIAA	9:23	0.31	25.9	72.5	7.64	0./	93.0	92.0	46.7	40.9	8.5	0.0	44	47.3

Date	23-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	(mg/L)	1g/L)	(%) OO	(%)	Turbidity (NTU)	(NTU)	Hd	н	SS(n	SS(mg/L)
) MM41	17.30	70.0	27.1	17.4	7.5	7.5	94.3	0.10	12.4	177	8.9	0	6	L
)-TIMM	12.39	0.57	27	7.77	7.57	c./	95.7	92.0	12.9	17.7	8.9	o.v	10	y. C.
10/01	17.77	VC 0	27.6	276	7.21	6.4	91.5	1 00	19.2	100	8.9	0 0	23	77 5
TIAIAA	12.2/	10.0	27.6	0.72	7.3	C./	92.7	92.1	18.7	19.0	8.9	6.0	22	C.22

Date	25-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (mg/L)	(T/bi	(%) OO	(%)	Turbidity (NTU)	(NTU)	d	рН	SS(n	SS(mg/L)
0,100	10.40	70.0	27.3	27.2	7.84	7.0	98.7	7 00	8.5	0	8.8	0	9	2 2
O-TIMA	10:40	0.34	27.2	5.72	7.84	7.0	98.7	96./	9.3	6.9	8.8	0.0	7	0.0
18/84	10.67	70.0	26.7	7.70	7.42	7.7	92.7	0 00	12.6	Ċ	8.9	0	10	C
TIAIAA	10:34	0.57	26.7	7.07	7.45	† :	93.0	97.9	11.4	12.0	8.8	o.0	6	ر. ن

	SS(mg/L)	38 39.0
		0.6
	hd	6
	y (NTU)	30.8
	Turbidity (N	30.1
	DO (%)	92.3
	DO	92.7
	DO (mg/L)	7.3
	DO (r	7.3
	emp (oC)	27.6
	Temp	27.6
	Depth (m)	0.31
27-May-16	Time	11:31
Date	Location	WM1-C

	0.71	34. 0
40	54	54
	-	9.1
6	9.1	9.1
	0 1	21.0
31.4	50.8	51.2
	0 2	03.3
91.8	87.9	82.7
	7	0.0
7.26	6.47	6.52
	0.70	0./2
27.6	27.7	27.8
	70.0	0.04
		11.19
	14/141	TIAIAA

Date	31-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	(mg/L)	Ja/L)	(%) OO	(%)	Turbidity (NTU)	(NTN)	Hd	Ŧ	SS(n	SS(mg/L)
() FWW1	11.40	70.0	28.4	7 00	96.9	7	89.7	9 00	14.5	110	8.5	0	11	7
O-TI₄I∧	11:40	0.54	28.3	4.07	6.97	0./	89.5	03.0	14.6	14.0	8.5	0.0	13	17.0
10,004	11.01	90 0	28.1	100	7.38	7 7	94.1	2	23.3	7.00	8.7	0 7	33	0.70
TIAIAA	10:11	07.0	28	707	7.38	† ./	94.0	94.1	23.6	22.3	8.7	0.,	35	04.0

Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only. Remarks:

Water Quality Monitoring Data for Contract 2 and 3

Date	3-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (mg/L)	Ja/L)	(%) oa	(%)	Turbidity (NTU)	(NTU)	Hd	н	SS(n	SS(mg/L)
7	14.40	70.0	27.6	276	7.65	7 7	97.2	د ده	7.5	7.7	6	0	6	C
WINIT HIND	14:40	0.27	27.6	0./2	7.65	/:/	97.2	7.76	8.0	/:/	6	y.0	10	ر. د.
00 77474	.00	0 17	27.5	7 7	2.66	7 7	71.7	7 17	7.7	7.7	9.8	90	12	100
WIYI4-CD	13:00	0.1/	27.5	C:/7	2.66	7.0	71.7	/1./	7.8	/:/	9.8	0.0	13	17.5
7,878.7	14.30	0 10	28.5	7 00	6.91	(0.68	0	9.4	0	8.7	7	10	L C
VVIVI4	14:30	0.19	28.5	78.5	6.91	6.9	0.68	89.0	10.6	10.0	8.7	8./	11	10.5

Date	5-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (mg/L)	(T/bı	(%) oa	(%)	Turbidity (NTU)	y (NTU)	Hd	I	(T/6w)SS	(1/6i
WW47 CA	11.40	7	27.8	0.70	7.76	7 0	98.4	7 00	9.5	L	6	c	9	2
WIYI4-CA	11:40	0.10	27.8	0.72	7.76	0./	98.4	90.4	5.3	0.0	6	9.0	7	0.0
WWA CD	14.60	10.0	28.7	7 00	6.27	6.5	81.1	01.0	7.7	7 5	8.3	0	2	0
WIYI4-CD	11:30	0.51	28.7	20./	6.29	0.0	81.5	01.3	7.3	C./	8.3	0.0	6	0.0
2 24/47	9.30	7	28.1	. 00	7.35	7	94.1	7	12.9	7	9.8	L	15	L 7
VV V 4	11:20	0.14	28.2	28.2	7.28	7.3	93.3	93.7	13.3	13.1	8.3	8.5	14	14.5

Date	7-May-16						İ							
Location	Time	Depth (m)	(oo) dwa_	(oc)	DO (mg/L)	Ja/L)	(%) oa	(%)	Turbidity (NTU)	(NTU)	d	ЬH	ม)SS	SS(mg/L)
VA/NA ()	00:0	0 10	27.8	0.40	7.88	7.0	100.4	9 00	5.7	5.7	8.4	7 0	9	ט ב
() - 	9.00	0.10	27.8	0./2	7.71	0./	8.86	99.0	5.8	7.0	8.4	. .	7	0.0
O PMM	0.21	00.0	28.0	0 00	6.85	0 9	87.5	C 70	9.5	c	8.4	7 0	70	0 00
WIVI4-CD	0.51	67:0	28.0	70.0	6.79	0.0	8.98	7:/0	9.1	7.6	8.4	4.0	70	70.0
79707	0.47	0 10	27.6	27.6	7.59	2 6	6.3	C 7.0	8.8	7	8.2	C 0	14	0 7 7
WIVI4	8:47	0.19	27.6	0./2	7.67	7.0	0.86	97.2	8.7	8./	8.2	8.2	14	14.0

Date 3-	у-мау-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (mg/L)	(1/6	(%) og	(%)	Turbidit	y (NTU)	Нd	_	SS(mg/L)	g/L)
0 7 7 7 9 1	11.05	UC U	28.8	0 00	7.8	7 0	100.6	100	5.8	O L	8.9	0	2	L
WI41-	COTT	0.29	28.8	70.07	7.81	0./	100.7	7:001	5.8	0.0	8.9	o.9	9	0.0

376	C./2	0	10.0
27	28	10	10
0	0.7	0.7	\. 0.\
8.7	8.7	8.7	8.7
16 5	T0.3	0 0	0.0
16.3	16.6	8.0	8.0
0 2 0	0.70	0 70	0.14.0
87.0	87.0	94.7	94.8
9 9	0.0	۲ ک	7:/
6.57	6.57	7.22	7.23
د ٥٥	20.7	70.7	4.67
30.2	30.2	29.4	29.4
000	0.00	V F O	0.14
11.33	11.22	10.E4	+C.O.1
- 0	07-H-VD	- VW	†

Date	11-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	(1/6w) od	ıg/L)	(%) oa	(%)	Turbidity (NTU)	y (NTU)	d	ЬH	SS(m	SS(mg/L)
V V V V V V V V V V V V V V V V V V V	13.50	00.0	27.2	ر 17	7.84	0 1	98.3	600	11.1	7 7	6		6	o
WIYI4-CA	13:30	0.20	27.2	7:/7	7.84	0./	98.3	70.5	11.7	11.4 +:11	6	۸. م.ر	7	0.0
14/4/4	14.05	0 21	29.5	ر 0ر	7.14	7 1	93.0	0	13.4	100	8.5	10	6	L
00-HIVI	14:03	0.51	29.2	7:67	7.14	7.1	93.0	92.0	14.4	13.9	8.5	0.0	10	y.5
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12.40	0	29.5	L	7.42	7	97.4	7 7	29.3	7.00	8.7	7	8	1
VV IVI 4	15:40	0.17	29.5	29.5	7.42	7.4	97.4	97.4	28.1	7.97	8.7	8./	7	C./

Date	13-May-16													
Location	Time	Depth (m) Temp (oC)	Temp	(oc)	DO (mg/L)	1g/L)	(%) oa	(%,	Turbidity (NTU)	(NTU)	Нd		u)SS	SS(mg/L)
0	12.30	0	27.2	ر 1ر	8.1	0	101.5	10	8.9	7.7	9.8	9 0	2	C
WI4-CA	15.30	0.10	27.2	7:/7	8.1	0.1	101.5	C'TOT	7.9	 	9.8	0.0		0.0
C PANA	13.4	60	28.3	د مر	7.3	7.7	94.1	7	6.7	7	8.1	C	8	o
VVIVI4-CD	15:45	0.51	28.3	70.5	7.3	C: /	94.1	74.1	7.3	0./	8.1	0.1		0.0
7 7 4 7 7	00.00	7	28.5	L C	8.14	Ċ	104.4	7 7 7	7.4	1	8.2	c	9	0
WIVI4	13:20	0.14	28.5	78.5	8.14	8.1	104.4	104.4	8.5	7.9	8.2	8.2		0.0

Date	17-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (mg/L)	J/GL	(%) OG	(%)	Turbidity (NTU)	y (NTU)	Hd	Ŧ	ม)SS	SS(mg/L)
V / / / / / / / / / / / / / / / / / / /	00:01	0 10	24	0.77	8.33	0.0	98.6	9 00	182.0	105 5	6		169	167.0
1)-History	10.00	0.10	24	74.0	8.33	0.0	98.6	90.0	189.0	103.3	6	9.0	165	10/.0
WW7 CD	00:0	0.01	24.6	2 1/0	7.53	7 5	90.5	100	6.5	0 7	8.6	90	11	10
WIVIT-CD	9.30	0.31	24.6	24.0	7.53	C./	90.5	50.0	7.0	0.0	8.6	0.0	10	10.3
77777	77.0	7 7	24.2	ر 4ر	8.28	0	8.86	0 00	8.2	6.0	8.7	7 0	6	L
VVIVI4	9:45	0.14	24.2	24.2	8.28	გ.პ	8.86	98.8	8.4	8.3	8.7	۵./	10	ر.بر د.بر
•					_,	-	_	-		-				

Date	19-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (mg/L)	J/Gı	(%) oa	(%)	Turbidity (NTU)	y (NTU)	Hd	I	SS(n	SS(mg/L)
0 0	14.20	0	27.4	7 7 7	8.02	0	101.4	7	8.0	0	9.1		6	c
WIYI4-CA	14:20	0.10	27.4	4.72	8.02	0.0	101.4	101.4	8.3	0.T	9.1	у. Т.	6	0. 0.
O PWW	14.45	0.34	28.8	0 00	8.29	0.0	107.1	107 1	6.4	2 2	8.7	7 0	8	7 5
VVIVI4-CD	C+:+T	0.51	28.8	70.0	8.29	0.0	107.1	TO/.T	6.7	0.0	8.7	0.7	7	Ç:/
2000	7.7	7	29	000	8.06		105.1	- LO	17.3	1 7	8.9	c	17	L 0
VVIV14	14:10	0.14	29	79.0	8.06	δ.Ι	105.1	105.1	17.5	17.4	8.9	χ.υ	91	10.5

Date	21-May-16													
Location	Time	Depth (m)	(oc) dwaL	(oc)	(mg/L)	Ja/L)	(%) OO	(%)	Turbidity (NTU)	y (NTU)	Нd	I	(T/6m)SS	(T/Gi
V	00.61	000	25.4	75.4	7.92	7.0	97.0	7 30	27.1	0.70	2.7	7.7	97	3 20
4)-HIM	12:09	0.29	25.4	4.07	7.86	٧./	96.4	70.7	26.9	0.72	7.7	/:/	27	20.3
C PANAI	11.67	0.45	25.6	ים כ	7.3	6.4	89.2	5	28.3	700	7.4	7.7	53	0.00
VVIVI4-CD	70:11	0.40	25.6	0.62	7:37	7.7	91.0	90.I	28.5	707	7.4	7.4	31	20.0
10,004	10.01	ç	26.4	7 70	7.55	7 7	93.9		33.9	L	7.5	1	68	0 00
WI4I4	12:31	0.31	26.4	20.4	9.2	0.7	94.7	94.3	36.3	35.1	7.5	۲.5	39	39.0

Date	23-May-16													
Location	Time	Depth (m)	(oc) dwa_	(oc)	DO (mg/L)	J/Gr	(%) OO	(%)	Turbidity (NTU)	y (NTU)	Нd	I	SS(mg/L)	g/L)
V V V V V V V V V V V V V V V V V V V	12.42	900	26.7	7 30	7.62	2 6	94.8	0 10	755.0	764.0	8.9	0 0	445	135
WIVI-CA	15:45	0.20	26.7	7.07	7.64	0./	95.1	0.06	767.0	0.10/	8.9	o.9	426	455.5
WWA CD	17.1	20	28.5	700	7.01	7 1	90.4	01.0	18.2	100	8.5	10	10	-
WIVI4-CD	14.11	0.31	28.5	c.02	7.11	1.7	92.0	21.5	17.7	10.0	8.5	0.0	12	0.11
10,000	17.71	cc	29.3	7 00	7.5	7 1	8.76	6	10.7	7	8.9	c	10	7
WIVI4	15:21	0.53	29.4	29.4	7.51	c./	98.4	98.1	11.3	11.0	8.9	8.9	12	11.0
													1	

Date	25-May-16													
Location	Time	Depth (m)	(oo) dwa_	(oc)	(mg/L)	(T/bı	(%) oa	(%)	Turbidity (NTU)	(NTN)	Нd	I	(7/6w)SS	ıg/L)
707777	15.20	10	27.9	0.70	2.68	7 7	97.5	3 20	8.8	0	6.8	0	6	L
() - t . .	02:61	0.10	27.9	6.72	7.68	/:/	97.5	G./6	9.1	o.0	8.9	o.0	10	y.5
WWA CD	15.20	0.21	29.9	0.00	6.84	0 9	8.06	200	12.7	120	8.4	70	22	0 66
WINH-CD	13.30	0.31	29.9	6.67	6.84	0.0	90.3	50.5	13.1	12.9	8.4	0.4	22	77.0

L	15.5
16	15
1	۵./
8.7	8.7
L	15.1
14.2	16.0
7	5./6
97.3	97.3
1	y./
7.87	7.87
6	23.8
29.8	29.8
7	0.14
L	15:05
7,777	W V 4

Date	27-May-16													
Location	Time	Depth (m) Temp (oC)	Temp	(oc)	DO (mg/L)	(T/Gı	(%) oa	(%)	Turbidity (NTU)	y (NTU)	Нd	_	SS(m	SS(mg/L)
0 77470	17.01	900	27.2	٠ ٢٠	7:37	7 7	92.8	1 00	104.0		8.7	7 0	160	1 63 6
WINH-CA	12:44	0.20	27.1	27.2	7.44	+/	93.4	93.1	111.0	C./UI	8.7	٥./	167	103.3
0 FM44	13:13	7.7	27.9	0.70	6.2	()	79.1	7 07	70.9	C 1-C	8.8	o	93	5
WINH-CD	12:13	0.45	27.8	27.9	6.14	7.0	78.3	/0./	71.4	71.7	8.8	0.0	90	91.5
77777	13:47	77	28.3	ר טר	6.67	7 7	85.3	0	120.0	L 6	8.2	c	195	6
4 IVI	13:1/	0.41	28.3	70.3	6.74	0.7	86.7	80.0	117.0	C'911	8.2	2.0	185	190.0

	SS(mg/L)	12.0	17.0	7	14.0	0	18.0
	SS(m	11	13	14	14	18	18
	Ŧ	30	0.0	0 0	0.0	0	8.0
	Нd	8.5	8.5	8	8	8.6	8.6
	[urbidity (NTU)	707	10.1	7 0	0.7	4 7 7	15./
	Turbidit	10.4	10.3	8.7	8.8	15.5	15.8
	(%) od	0 2	95.7	0 00	0.00	L	5.5
) OQ	92.6	95.7	88.1	87.9	95.5	95.5
	DO (mg/L)	7.7	7:/	2	0.0	1	7.0
	u) 00	7.22	7.22	6.5	6.49	7	7
	(oc)	6 06	20.7	21.2	21.3		51.8
	Temp (oC)	30.2	30.2	31.3	31.3	31.8	31.8
	Depth (m)	0 10	0.10	100	0.51	7	0.14
31-May-16	Time	16.06	10.00	16.16	10.10	1.4	15:45
Date	Location	VUV	WI4I+CA	a) PMM	WIVIT-CD	7 9 4 9 4	VVIVI4

Water Quality Monitoring Data for Contract 6

	~= /m: ~													
Location	Time	Depth (m)	Temp (oC)	(oc)	п) OQ	mg/L)	(%) od	(%)	Turbidity (NTU)	(NTU)	Hd	-	SS(mg/L)	g/L)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	or o	25.8	0 70	7.8	7	95.7	0	5.1		8.60	0	<2	,
WINZA-C	10:19	0.28	25.8	72.0 7	7.84	۷.۷	0.96	yy	5.0	7.C	8.60	0.0	<2	7>
0.04747	10.01	0 17	27.6	27.6	7.79	7.7	99.3		19.5		8.30	C	13	, L
WINZA	10:37	0.17	27.6	0./2	7.7	/./	0.66	33.7	18.6	19.1	8.30	ø.5	14	13.5

Date	5-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	u) 00	O (mg/L)	(%) oa	(%)	Turbidit	Turbidity (NTU)	ď	I	SS(mg/L)	g/L)
7 V CIVIVV	14.05	oc o	25.5	ש שנ	7.85	0 1	0.96	0 90	7.5	7 5	9.70	7	9	0
VVIVIZA-C	14.00	0.20	25.5	53.3	7.85	۲.۶	0.96	90.0	7.6	C:/	9.70	7.7	9	0.0
A Chalai	14.30	0 11	28.2	רטנ	7.56	2.6	2.96	7	11.2	-	9.30	c	6	L
WINZA	14:30	0.17	28.2	20.2	7.56	7.0	6.7	90.7	11.8	11.5	9.30	9.5	10	9.5

Date	Date 7-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (п	(mg/L)	(%) OG	(%)	Turbidity (NTU)	y (NTU)	Hd	Ŧ	SS(m	SS(mg/L)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		20.0	29.3	7 00	7.82	7	8.76	60	5.7	7 2	9.40	7	4	7
VVIVIZA-C	10:41	0.27	29.4	4.67	7.88	٧./	98.3	90.I	5.8	7.0	9.40	ų. 1.	4	4.0
A CMAA	10.60	-	26.7	0 30	7.36	7 7	6.3	0 90	22.3	0 00	9.40	7	14	101
WIVIZA	10:39	0.11	26.8	20.0	7.45	7.4	97.3	90.0	23.7	72.0	9.40	7.4	13	T2.5

Date	9-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	и) oa	mg/L)) OQ	DO (%)	Turbidit	Furbidity (NTU)	Hd	I	u)SS	SS(mg/L)
O A CRANA	14.63	90.0	25.9	0 10	6.61	9 9	81.2	010	8.9	0	9.00		21	100
VVIVIZA-C	14:32	0.20	25.9	6.62	6.62	0.0	81.3	01.3	8.9	6.9	9.00	۸. م.ر	70	20.2
A C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	14.33	02.0	29.2	. 00	7.5	7 5	98.0	100	14.2	7 7	8.90	0	12	, ,
WIYIZA	14:32	0.70	29.2	7:67	7.51	C:/	98.2	90.1	14.0	1.7.1	8.90	٥.9	12	17.0

Date	11-May-16							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	(%) OO	Turbidity (NTU)	Н	SS(mg/L)

0	0.0	L 000	200.5
9	9	204	209
,	9.1	Ċ	9.0
9.10	9.10	9.00	9.00
,	12.1	707	T90.0
11.7	12.5	184.0	188.0
7	93.7	2	95.0
95.7	95.7	92.0	95.0
0	0.1	7 7	/./
8.09	8.09	7.7	7.7
2	24.0	0 20	70.0
24	24	56	26
000	0.29	000	0.20
	11:20	10.4	10:45
0 00000	VVIVIZA-C	A C 141.41	WINZA

Date	Date #12-May-16									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	(%) OQ	Turbidity (NTU)	(NTU)	Hd	w)ss	SS(mg/L)
O A Chalar		oc o				4.7	0 7		m	Ċ
VVIVIZA-C	11:33	0.29				4.8	0.			0.0
A CLANA		0				21.1	7 10		14.1	7
WIMZA	CIII	0.10				21.6	71.4			14.1

Date	Date 13-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (m	(mg/L)	(%) OG	(%)	Turbidity (NTU)	y (NTU)	Н	+	SS(mg/L)	g/L)
O A CEALAY		90.0	26.4	17 70	7.89	7	6'26	0.40	3.8	-	8.20	ر ٥	<2	ζ
VVIVIZA-C	11:10	0.20	26.4	4.07	7.89	v.'	97.9	97.9	4.4	1	8.20	7.0		7,
V C V V V V	11.00	7	27.5	7.7.	7.77	7 0	98.4	7 00	22.3	7	8.30	C	6	c
WIVIZA	11:00	0.17	27.5	C./2	7.77	7.0	98.4	96.4	22.7	27.2	8.30	გ.ე		9.0

Date	17-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	(mg/L)	(T/bı	(%) OQ	(%)	Turbidity (NTU)	y (NTU)	Hd	_	(T/6m)SS	g/L)
O & C & A & A & A & A & A & A & A & A & A		25.0	25.9	0 10	7.87	7	97.0	7 20	5.1	-	8.80	o	<2	ζ
VVIVIZA-C	11:38	67.0	25.9	6.02	7.8	0./	96.3	700.	5.0	J.C	8.80	0.0		7
V CPAIVI	, C.	9	25.5	ר	2.98	c	97.4	7	58.2	C	8.30	c	9	L
WIMZA	11:34	0.18	25.5	72.5	7.93	α.0	97.0	7.76	58.9	9 <u>8</u> .6	8.30	χ.χ	99	65.5
Date	#18-May-16	,,												
Location	Time	Depth (m)	Temp (oC)	(oc)	(mg/L)	ıg/L)) OQ	(%) og	Turbidity (NTU)	y (NTU)	Hd	_	(T/6w)SS	g/L)
0 4 0 4 4 4 4 4		70.0							2.7	7			9	0
VVIVIZA-C	11:38	0.27							5.7	2.7			9	0.0
WM2A	11:21	0.13							21.6	21.8			14	14.0

									21.9				14	
Date	Date 19-May-16													
Location	ocation Time Depth (m)	Depth (m)	Temp (oC)	(oc)	и) oa	(mg/L)	(%) OG	(%)	Turbidit	Turbidity (NTU)	d	Hd	SS(mg/L)	(1/b)
O & C. M. A. V.	10.33	7	23.3	22.2	7.83	7 0	92.7	9 00	4.7	7 7	9.50		2	
VVIVIZA-C	WMZA-C 10:32	0.51	23.3	72.2	7.86	7.0	92.4	97.0	4.8	4./	9.50	y.5	4	4.0
A CLAVA	11.77	7 1 1	26.2	76.0	7.83	7 0	2.96		23.1	0.00	9.30	c	13	10.1
WIVIZA	11:4/	0.1/	26.1	7.07	7.86	۷.۷	97.1	90.9	22.6	6.77	9.30	y.5	14	13.5

Date	Date 21-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (п	(mg/L)	(%) oa	(%)	Turbidit	urbidity (NTU)	Hd	-	SS(m	SS(mg/L)
O 4 C14141		77	24.7	7 7 7	8.11	0	97.3	0 90	10.4	106	8.40	7 0	6	L O
VVIVIZA-C	9.43	14.0	24.7	74.7	8.08	0.1	96.5	90.9	10.7	10.0	8.40	1. 0	8	0.0
A CRAVA	0.1	oc o	25	0 10	7.94	d	6.3		59.8	C L	7.90	1	82	L
WIMZA	10:11	0.20	25	25.0	8.07	ø.0	97.4	90.9	58.5	23.5	7.90	7.9	81	61.5

Date	Date 25-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	u) 00	mg/L)	00	(%) od	Turbidit	Furbidity (NTU)	Нd	_	SS(m	SS(mg/L)
0 4 0 1 1 1 1		90.0	26.8	0 50	7.78	7 0	97.4	7 70	5.1	7	8.30	0.0	2	0
VVIVIZA-C	14:00	0.20	26.8	70.0	7.78	0./	97.4	44	5.7	7.0	8.30	o.0	2	0.0
A CRANA	14.2	0 13	28.7	7 00	7.19	۲ ک	94.8	0 7 0	23.8	1 1 7	8.30	0	14	7 7 7
WINZA	14:23	0.17	28.7	70.7	7.19	7.7	94.8	94.0	24.3	74.1	8.30	٥.5	14.1	14.1

Date	Date 27-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	л) oa	(mg/L)	(%) OO	(%)	Turbidit	Furbidity (NTU)	Hd	.	SS(mg/L)	1d/L)
O & C & A V & V	10.30	22.0	25.1	75 1	7.55	2 6	91.8	,	9.9	2 2	9.50		5	7
VVIVIZA-C	10:29	0.33	25.1	72.1	7.59	7.0	92.3	92.1	6.7	0.7	9.50	y.5	4	4.0
A C 1/4/A /	10.71	70.0	26.4	30	7.35	7.2	91.3	,	259.0	0 020	9.30	c	188	L
WIYIZA	10:41	0.27	26.5	70.5	7.34	c./	91.1	91.2	287.0	2/3.0	9.30	y.5	191	189.5

#28-May-16	
Date	

Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	(%) OQ	Turbidity (NTU)	Нd	SS(mg/L)	g/L)
WM2A-C	12:04	0.34				11.8		<2	<2
A C \$41.47		,				70.7		94	,
WIMZA	11:17	0.11				70.7			94.0

Date	Date 30-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	ш) oa	(mg/L)	(%) OG	(%)	Turbidit	rurbidity (NTU)	Hd	-	SS(mg/L)	(J/6)
O A CEALAN		20.0	26.3	N 90	2.68	7.7	94.8	7. 70	3.6	7.0	8.80	0	<2	د/
VVIVIZA-C	EO:01	0.27	26.5	70.7	2.66	/:/	94.6	74.7	3.7	2.7	8.80	0.0		7,
V C V V V V	20.0	0	27.9	0.40	7.61	7.	93.6	0	52.9	C L	8.50	L	26	1
WIVIZA	12:04	0.18	27.9	27.9	7.62	7.0	94.1	93.9	53.6	55.5	8.50	6.5		76.0

Date	Date 31-May-16													
Location	Time	Depth (m) Temp (oC)	Temp	(oc)	ш) oa	(mg/L)	(%) oa	(%)	Turbidit	urbidity (NTU)	Нd	-	SS(mg/L)	(1/6i
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.36	90.0	25.8	ט אַכ	7.71	7 7	95.1	1	3.5	C	8.80	C C	<2	ζ,
WINZA-C	10:30	0.20	25.7	72.0	7.69	/:/	95.0	73.T	3.5	5.0	8.80	0.0	<2	7>
A CANAN	11.00	7	28.3	. 00	7.36	7	93.4	L (68.2	,	8.50	L	85	L
WINZA	11:00	0.1/	28.3	78.3	7:37	7.4	93.6	93.5	6.79	1.80	8.50	8.5	84	64.5

Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only. Remarks:

Date	Date 3-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	u) oa	(mg/L)) OQ	(%) od	Turbidity (NTU)	y (NTU)	Hd	-	SS(m	SS(mg/L)
0 00000			25.5	7 70	7.82	7	95.4	C 10	5.3	C	8.80	C C	<2	ζ
VVIVIZB-C	9:40	0.01	25.5	72.5	7.8	δ./	95.0	7.56	5.4	5.5	8.80	χ. X.	<2	7
0074747			27.8	0.70	7.9	7	100.8	000	8.5	7	8.80	c	3	c
WIVIZB	9:54	0.01	27.8	27.8	7.85	7.9	99.7	100.3	8.3	6.4	8.80	8.8	3	3.0

Date	5-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	и) oa	(mg/L)) OQ	(%) OQ	Turbidit	Turbidity (NTU)	Н	-	SS(m	SS(mg/L)
		20.0	24.2	ر 7ر	7.92	7	94.4	9 60	3.0	Ċ	9.20	0	5	L
VVIVIZD-C	9:33	0.02	24.1	7:47	7.81	y: /	92.8	92.0	2.9	0.0	9.30	y.5	5	0.0
GC MAYA	10.07	200	56.9	0 90	66'2	0	107.8	1001	10.4	707	8.90	0	7	7 5
WIYIZD	10:07	0.02	26.9	20.9	8.07	0.0	108.3	100.1	10.8	10.0	8.90	6.9	8	C./

Date	7-May-16													
Location	Time	Depth (m)	Тетр	remp (oC)	u) oa	(mg/L)) OQ	(%) 00	Turbidity (NTU)	y (NTU)	Hd	-	SS(m	SS(mg/L)
0.000		CO	27	0.70	7.32	7	92.0	7	5.6	1	10.10	7	2	Ċ
VVIVIZB-C	95.59	0.02	27	0.72	7.27	5./	91.1	91.0	5.8	7.0	10.10	T0.T	2	7.0
CVAVA	00:00	CO	29.1	,	92'8	L	107.8	7 00 7	22.0		9.70	7	2	L 7
WIVIZB	10:20	0.02	29.1	29.1	8.33	8.5	109.0	108.4	24.0	73.0	9.70	9.7	4	4.5

Date	9-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	и) oa	(mg/L)) OQ	(%) 00	Turbidity (NTU)	y (NTU)	Н	-	u)SS	SS(mg/L)
) activity		0	24.7	7 70	7.84	7.0	94.4	7 70	2.8	0 0	9.40	7	4	7
VVIVIZD-C	CT:CT	0.02	24.7	74.7	7.83	٥./	94.3	4:4	2.8	7.0 7.0	9.40	y. 4.	2	C.
C VVVV	15.03	CO	30.6	200	8.29	0	110.6	L C	4.7	7 7	8.90	0	2	Ċ
WIYIZD	13:02	0.02	30.6	20.0	8.28	0.5	110.4	110.5	4.7	4./	8.90	6.9	2	7.0

Date	Date 11-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	u) oa	(mg/L)) DO	(%) od	Turbidity (NTU)	y (NTU)	Hd	T	SS(m	SS(mg/L)
0 00000			23.8	0 00	6.36	7 0	75.1	7. 1	4.3		9.30	c	က	c
VVIVIZD-C	11:43	0.02	23.8	72.0	98.9	4.0	75.1	1.5.1	4.8	4.0	9.30	ر. د.	3	0.0
CVAVA		c	27	0.70	7.91	1	9.66	9	10.2	,	00.6	c	11.1	
WIVIZB	11:35	0.03	27	77.0	7.91	7.9	9.66	99.0	11.0	10.0	9.00	9.0	11.2	71.7

Date	13-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (n	(mg/L)) OQ	(%) OQ	Turbidity (NTU)	y (NTU)	нd	T	SS(m	SS(mg/L)
) activity	11.00	0	27	0.40	6.75	2.3	84.1	1 70	2.5	0 0	8.20	C	<2	د,
VVIVIZD-C	11:20	0.02	27	0.72	6.72	0./	84.1	04.1	3.2	7.0	8.20	7.0		7>
CVAVA	11.1	000	27.6	22.6	8.43	0	107.0	107.0	1.9	,	7.90	7	<2	د/
WINZD	CI:II	0.02	27.6	0./2	8.43	6.4	107.0	107.0	2.7	7.3	7.90	7.9		< 2

Date	17-May-16													
Location	Time	Depth (m)	Temp	Temp (oC)	DO (n	(mg/L)) OQ	(%) OQ	Turbidity (NTU)	y (NTU)	Hd	I	SS(m	SS(mg/L)
00000		C	23.4	7	8.43	0	82.0	C	3.4	, ,	9.50	L	7	1
WIVIZB-C	14:00	0.02	23.4	73.4	8.43	δ 4.	82.0	82.0	3.8	2.0	9.50	y.5	8	C:/
00000	C T	C	25.9	L	96.9	7	103.6	7 00 1	3.9	,	9.30	c	4	
WINIZB	13:50	0.02	25.9	62.9	86.9	0./	103.6	103.0	4.3	4.T	9.30	y.5	4	4.0
Date	19-May-16													
Location	Time	Depth (m)	Temp	Temp (oC)	n) 00	(mg/L)	00	(%) OG	Turbidity (NTU)	y (NTU)	Hd	I	SS(m	SS(mg/L)
(200	O T		23.3		7.14	1	83.6	200	3.3	,	10.10	0	3	0
VVIVIZB-C	10:01	0.02	23.2	23.3	7.1	T'./	83.1	83.4	3.2	5.3	10.10	10.1	<2	3.0
CVVV	0,1		25.6	2 10	8.27	c	101.0	L	4.9	L	9.70	7 0	<2	ζ
WIVIZB	10:19	0.02	25.5	72.0	8.21	۵.2	100.0	C'00T	5.1	5.0	9.70	7.7	<2	7

_		71111												
ocation	Time	mebru (m)	Temp (oC)	(oc)	DO (n	mg/L)	(%) od	(%)	Turbidit	rurbidity (NTU)	표	_	SS(mg/L)	lg/L)
	10.61	700	25.3	75.2	6.94	7.0	84.5	0 1	0.9	0	8.00	0	7	7
VIVIZD-C	10:01	0.04	25.3	23.3	7.03	7.0	85.7	03.1	5.9	0.0	8.00	0.0	7	0.7
	50.01	0	25.3	C L	7.84	1	95.5	,	97.7	6	7.80	1	152	C L
WIYIZB	10:37	0.09	25.3	25.3	7.9	7.9	9.96	90.1	102.0	9.9.9	7.80	7.8	152	152.0

Date	Date 23-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	и) oa	(mg/L)) OQ	(%) 00	Turbidit	Turbidity (NTU)	Hd	-	SS(mg/L)	g/L)
7 907474		CO	23.6	2000	7.01	,	82.7	7 00	5.0		9.20	C	<2	ζ,
WINIZB-C	10:41	0.02	23.6	72.0	7.13	/.I	84.0	65.4	4.8	4.9	9.20	3.2	<2	<2
GC MAYA	50.01	0	26.4	7 70	8.22	c	102.2	1000	10.8	7	8.70	7	11.1	
WIMZB	10:27	0.03	26.4	70.4	8.31	8.3	103.3	102.8	11.2	11.0	8.70	8./	11.3	11.2

Date	Date #24-May-16								
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	(%) OQ	Turbidity (NTU)	рН	SS(mg/L)	g/L)
WM2B-C	11:16	0.02				9.9		8	8.0
WM2B	11:07	0.03				7.2 7.2		7	7.0

Date	Date 25-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (n	(mg/L)) OQ	(%) og	Turbidity (NTU)	y (NTU)	Hd	-	SS(mg/L)	ıg/L)
0 00000		0	26.4	2 20	7.26	7.2	0.06		2.4	7	9.10	,	4	7
VVIVIZD-C	13:40	0.02	26.5	20.5	7.26	7.3	90.0	90.0	2.4	7:4	9.10	9.1	4	4.0
0.000	7.5	C	28.1	•	7.91	1	101.6	7	2.8	Ċ	8.70	1	4	L
WINIZB	13:45	0.02	28.1	78.1	7.91	7.9	101.6	101.6	3.2	3.0	8.70	8./	5	4.5

Date	27-May-16							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	(%) OO	Turbidity (NTU)	Н	SS(mg/L)

0	7.0	ζ,	7>
7	<2	<2>	<2
100	10.0	7 0	9.4
10.00	10.00	9.40	9.40
CC	5.5	0 1	5.0
3.3	3.4	5.8	5.8
3 00	07.3	1000	102.8
82.3	82.7	102.4	103.1
7.0	7.0	C	6.2
66.9	7.04	8.19	8.24
7 66	77.7	0 50	20.9
23.6	23.7	56.9	26.9
600	0.02		0.02
0.64	9.31	10.03	10:03
O acMin	VVIVIZD-C	90747	WIMZB

Date	Date 31-May-16													
Location	Time	Depth (m)	Temp	Temp (oC)	u) 00	(mg/L)	(%) oa	(%)	Turbidity (NTU)	y (NTU)	Hd	I	SS(mg/L)	g/L)
CAMA	10.16		24	0.70	6.93	0	82.5	7 00	2.9	Ċ	9.00	c	<2	ζ
VVIVIZD-C	WMZD-C 10:10	0.02	24	24.0	6.92	6.0	82.5	67.3	2.9	7.3	9.00	9.0	<2	7>
CVVV	16.30	000	31.9	6	7.38	7 7	100.3	7	4.3	7 7	8.80	o	2	L
WIYIZD	02:01	0.02	31.9	51.9	7.38	+ :/	100.3	T00.3	2.0	0.4	8.80	0.0	2	0.0

Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only. Remarks:

Water Quality Monitoring Data for Contract 2 and 6

Location	Time	Depth (m)	Temp (oC)	(oc)	DO (n	(mg/L)) OQ	(%) OQ	Turbidity (NTU)	y (NTU)	Нd	I	SS(n	SS(mg/L)
CVAVA	1.	000	27.5	37.0	96.9	7	88.7	0	6.1	0	7.30	7.0	8	o
اب-دا\\	10:11	0.05	27.5	27.3	7.03	7.0	89.3	69.0	5.8	0.0	7.30	7.2	8	0.0
CIVIVI	13:07	1	27	0.70	7.56	2 6	94.8	100	11.8	1 1	7.60	2 2	8	10
CIVIV	12:07	0.15	27	27.0	7.6	7.0	95.3	93.1	11.5	11./	7.60	7.0	6	0.0

Date	Date 5-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	u) oa	(mg/L)) OG	(%) OQ	Turbidity (NTU)	y (NTU)	Hd	+	SS(n	SS(mg/L)
0 0000	12.4	000	28.7	7 00	9/.9	0	87.2	07.7	27.4	700	10.30	70.0	71	7
)-CI/IW	15:45	0.02	28.7	7.07	9/.9	0.0	87.2	7./0	29.5	70.5	10.30	10.5	20	0.07
Chalar	10.01	L	27.7	7 7 7	7.12	1	0.06		22.1	L	7.90	7	45	, ,
WINS	13:35	0.15	27.7	7./7	7.12	7.1	90.0	90.0	24.9	73.5	7.90	7.9	46	45.5

Date 7	7-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	u) og	(mg/L)	(%) oa	(%)	Turbidit	Furbidity (NTU)	Hd	_	(T/6m)SS	ıg/L)
CVVV	0.43	0	28.9	0 00	7.19	۲ ۲	93.3	0 00	39.6	20.1	10.80	0 0	104	100
7-SIMIS-C	9:43	0.09	28.9	28.9	7.24	7:7	94.3	95.8	38.5	39.T	10.80	10.8	103	103.5
CIVIVI	.0.2	,	27.5	376	7.46	7 5	94.3	2 70	7.3	7 7	8.20	ر ٥	10	10
CIVIV	9:31	0.11	27.5	C./2	7.49	7.3	95.1	94.7	7.6	7.4	8.20	0.2	11	10.5

Date	Date 9-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	u) oa	mg/L)) OQ	(%) od	Turbidit	Furbidity (NTU)	Hd	-	SS(n	SS(mg/L)
C C C C C C C C C C C C C C C C C C C		000	29.3		6.52		84.8	0.70	10.1	7	10.40	7	56	1 70
ر- ۱۷۱۷ ا	10:01	0.03	29.3	29.3	6.51	0.0	84.7	ο4.ο	10.3	7.01	10.40	10.4	27	20.5
Chalar	10.01	L	28.4	7 00	7.18	7	92.5		20.2	,	10.00	7	32	7
SIMIN	C0:0T	CT'N	28.4	79.4	7.17	7:/	92.4	6.26	20.5	20.4	10.00	10.0	30	31.0

	Date #10-May-16									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	(%) OO	Turbidity (NTU)	(UTI	Hd	SS(mg/L)	g/L)
0 6840	13.4F	30.0					- -		70	0 02
۱۷۱۷۱ کا ۱۸۱۷ کا ۱۸۲ کا ۱۸۲ کا ۱۸۲ کا ۱۸۲ کا ۱۸۲ کا ۱۸۲ کا ۱۸ کا ۱۸۲ کا ۱	15:43	0.00					43.I			0.07
CMM	12.20	000				63.0	• 65		69	
CIVIV	15:50	0.50					7.6			0.60

Date	Date 11-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (n	(mg/L)	(%) od	(%)	Turbidity (NTU)	y (NTU)	Hd	-	u)SS	SS(mg/L)
CVVVV	10.0	20	28.9	0 00	7	7	90.4	7	3.2	7	7.70	7.7	11	7
VIVIS-C	CC:CT	40.0	28.9	20.9	7	0.7	90.4	70.4	3.6	4.0	7.70	/:/		11.0
CLALAY	77.77	0.10	27.8	0.70	6.9	0	87.4	07.4	5.4	- 2	8.20	C	12.1	,
CIVIVV	15:47	0.10	27.8	0./7	6.9	6.9	87.4	67.4	5.9	2.7	8.20	0.7		17.1

Date	Date #12-May-16									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	(%) OG	Turbidity (NTU)	(UTI	Hd	u)SS	SS(mg/L)
CENTAL	77:1	10.0				5.4			7	0 2
)-CI _N IN	17:10	0.00					7.4			0.7
CIVIVI		7				72.8	1		74.2	1
CIVIVV	06:11	0.14					0.//			74.2

Date	13-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	u) oa	(mg/L)) OQ	(%) og	Turbidit	furbidity (NTU)	Hd	-	SS(m	SS(mg/L)
CVVVV	7.00	000	29.4	7 00	5.78	C	75.9	75.0	4.8	C	7.90	7	9	0
)-CI _N IN	12:00	0.03	29.4	43.4	5.78	0.0	75.9	73.9	5.6	7.6	7.90	٧.۶		0.0
Chalar	1.40	L	27.9	71.0	7.54	7 1	96.1	,	12.4	7	8.00	c	13	C +
VVIVIS	11:40	0.T5	27.9	6.72	7.54	c./	96.1	90.1	13.2	17.8	8.00	φ.υ	12	17.5

#16-May-16	
Date	

-									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	(%) OO	Turbidity (NTU)	Hd (r	SS(mg/L)	g/L)
	7.0	L				4.5		3	c
۱۳۱۵-۲ I	CZ:01	0.00				4.3			0.0
_	00.0	C+ 0				12.9		12	7
1	10:39	0.13				13.1			17.0

Date	Date 17-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	u) oa	(mg/L)	00	(%) OD	Turbidity (NTU)	y (NTU)	Hd	-	SS(mg/L)	(1/6
0 0000	14.0	20	56	0 00	7.49	7.5	92.2	9 00	5.0	0.1	10.20	7	9	L L
VVIVIS-C	14:23	0.04	26	70.0	7.57	7.5	92.9	92.0	4.9	4.9	10.20	7.01	5	0.0
CANAN	13.30	7	25	0 10	7.17	7.7	2.98	0	3.8	C	8.20	C	<2	ζ,
SIMIN	15:29	0.11	25	72.0	7.19	7.2	87.0	80.9	3.8	5.0	8.20	2.0	<2	7>

Date	Date 19-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	л) оа	(mg/L)	(%) OO	(%)	Turbidit	Turbidity (NTU)	Нd	-	SS(m	SS(mg/L)
CVAVA	0.43	700	25.7	0 10	7.49	7 7	92.4	,	13.9	7 7	11.20	,	104	7
VIVIS-C	9:43	0.04	25.9	72.0 7	7.43	7.5	91.7	92.1	12.4	13.2	11.20	11.2	104	104.0
CNAVA	0.0	7	24.4	7 7 0	7.95	c	95.2	L	3.1	,	9.40	7	4	7
WINS	9:21	0.T4	24.3	74.4	7.97	۵.0 م	95.7	95.5	3.2	3.I	9.40	4.	4	4. 0

Date	Date 21-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	u) oa	(mg/L)) OG	(%) OQ	Turbidity (NTU)	y (NTU)	Hd	-	(7/6w)SS	ıg/L)
J CMM	71.17	0	25.7	25.0	7.47	2 2	91.8	0.7	28.2	300	7.40	7.7	28	0 30
اب ا	11.17	07.0	25.8	73.0	7.5	c./	92.3	34.1	28.7	c.07	7.40	۲.,	35	20.0
CIVIVI	, t.	70.0	25.9	0 10	7.4	7	91.1	7	9.95	11	7.50	7 2	54	C U
VIVIS	11:34	0.27	25.9	6.62	7.37	7.4	90.3	90.7	58.8	7./6	7.50	C./	58	0.00

Date	23-May-16							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	(%) OO	Turbidity (NTU)	Нф	(T/Gm)SS

ן ננ	27.3	-	11.3
22	23	12	11
7.0	7.0	90	0.0
7.80	7.80	8.60	8.60
120	13.0	0 61	12.0
13.1	12.9	11.8	12.2
0.4	91.3	1 00	09.1
91.4	91.5	6.88	89.3
7 1	7.1	۲ ک	7.2
7.13	7.16	7.18	7.23
70.4	70.1	75.7	7.07
28	28.1	26.2	26.2
70.0	0.0	0.10	0.13
11:10	11:10	11.72	11.23
C CVVVV)-CI/IV	CIVIV	CIVIVV

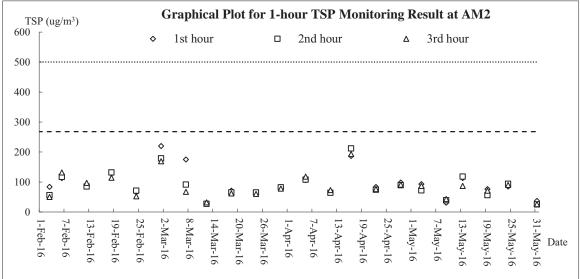
Date	Date #24-May-16									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	(%) OG	Turbidity (NTU)	(UTN)	Н	SS(n	SS(mg/L)
WM3-C	11:33	0.05				4.2	4.2		2	5.0
WM3	11:43	0.17				11.4	11.4		12	12.0

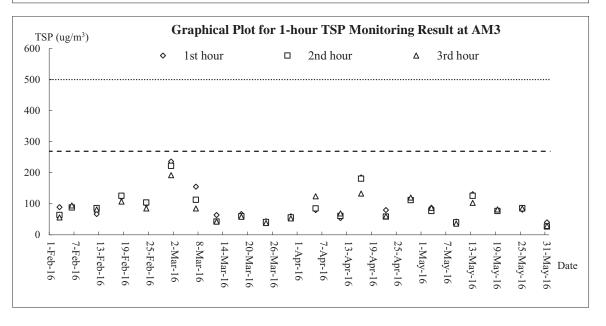
Date	25-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	DO (mg/L)	1g/L)	(%) oa	(%)	Turbidity (NTU)	y (NTU)	Hd	-	SS(m	SS(mg/L)
0 074771	0.40	70	27.8	0.40	7.42	7 5	94.4	2	6.3	7 7	7.90	7	13	10.1
الماري. م-120	9:49	0.04	27.7	0./2	7.53	7.2	92.6	93.0	9.9	0.4	7.90	7.9	14	13.3
CNAVAY	76.0		26.9	0 90	99'2	2 6	95.9	100	12.6	7 0 7	8.80	o o	12	7
CIVIVV	9:57	0.11	26.9	20.9	7.6	7.0	94.3	93.1	12.1	12.4	8.80	0.0	12	12.0

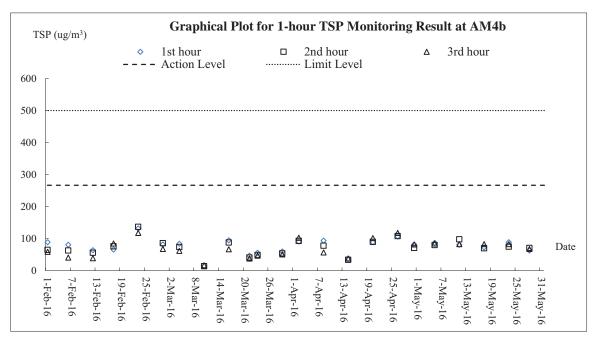
Date	Date 27-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	и) oa	(mg/L)) OQ	(%) od	Turbidity (NTU)	y (NTU)	Нd	-	SS(n	SS(mg/L)
0 074747			27.3		7.17	7.7	90.4	7	8.9	7 2	10.60	0	75	0.77
ا ۱۷۱۸ ا	y:39	0.00	27.3	5.72	7.21	7:/	91.0	7.06	6.5	0.7	10.60	10.0	79	0.//
CANA	, C. O	7	26.3	6 90	6.84		84.7	C 10	13.0	707	8.70	7 0	19	L C T
CIVIV	9:24	0.14	26.3	70.3	6.9	0.9	85.9	63.3	13.3	13.2	8.70	0./	18	T0:0

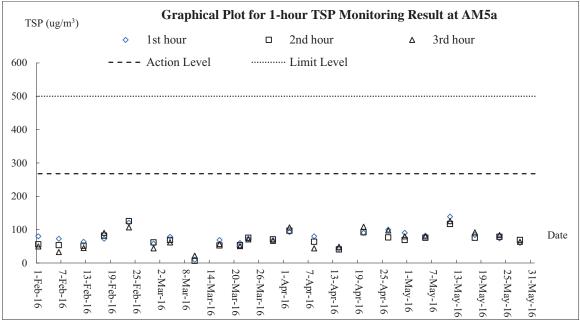
	Date 31-May-16													
Location	Time	Depth (m)	Temp (oC)	(oc)	m) og	(mg/L)	(%) oa	(%)	Turbidity	ty (NTU)	Hd	_	SS(n	SS(mg/L)
O CM/M	12.44	20.0	29.7	7.00	6.16	2	89.0	100	5.9	C	8.70	0.7	8	0
7-CI/10V	15:44	0.00	29.7	7.67	6.77	0.0	89.1	09.1	5.9	5.9	8.70	0./	8	٥.0

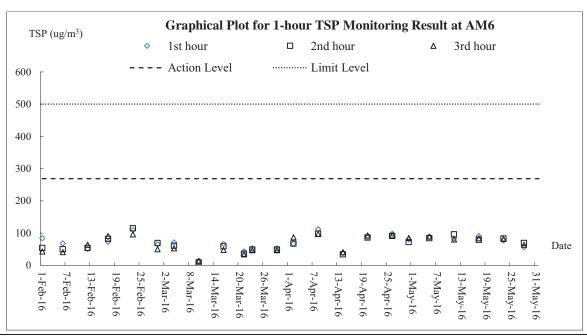
CNAVA	13.30	-	28.8	0 00	6.84	0 9	88.5	2 00	12.0	,	8.70	0 7	12	, ,
NIVI SIMIN	13:30	0.T5	28.8	78.8	6.85	ο.α	9.88	88.0	12.3	17.7	8.70	۵./	13	17.5
Remarks:	# Additional	l water qu	quality monitori	nonitoring for the	e parameter	rs with Aa	ction/Limit 1	sevel						

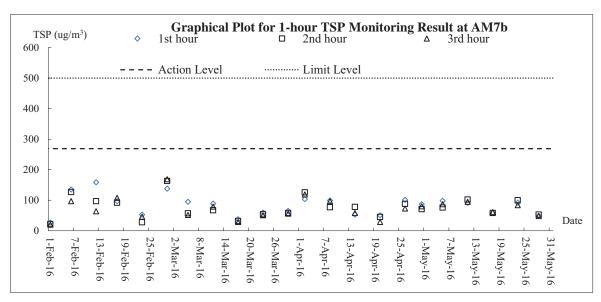

Appendix J

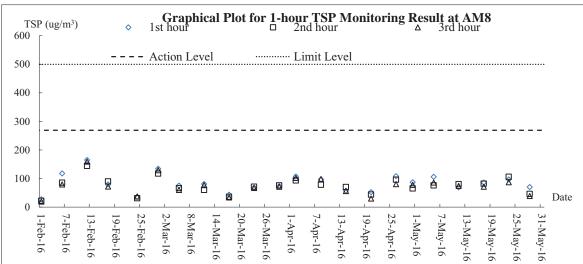

Graphical Plots for Monitoring Result

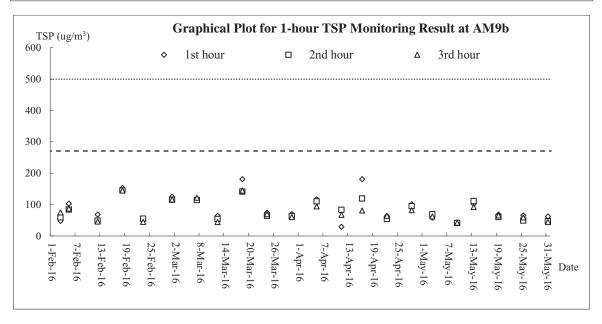

Air Quality - 1-hour TSP

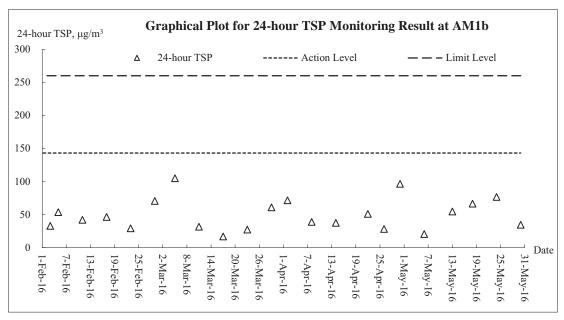


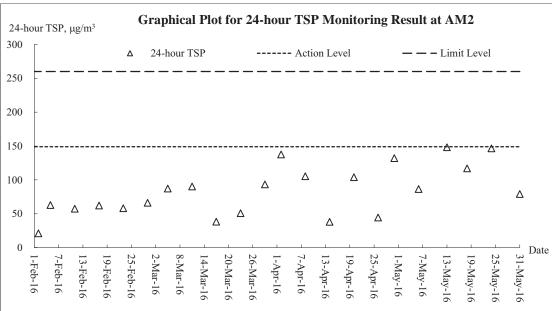




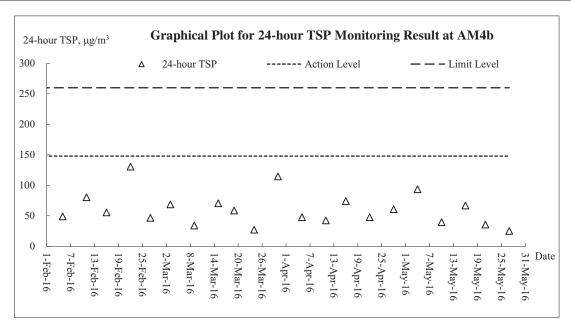


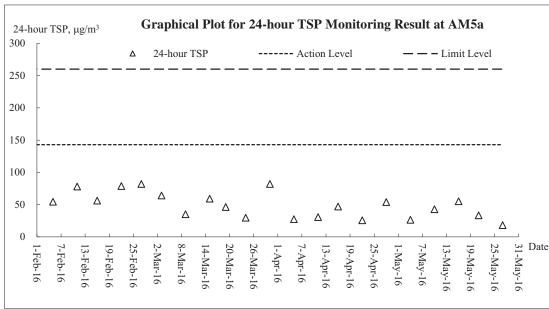


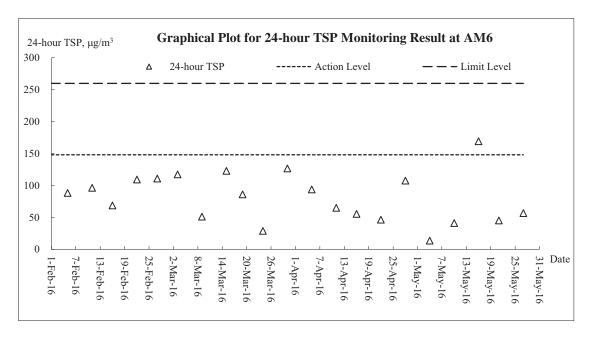


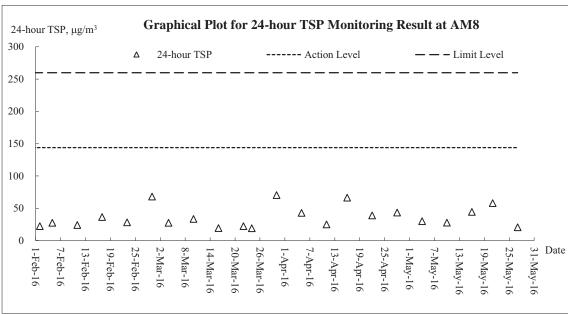


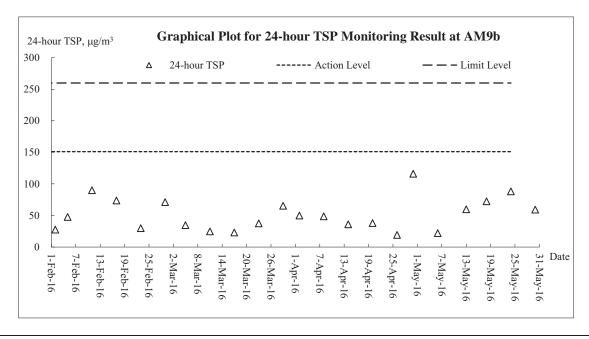


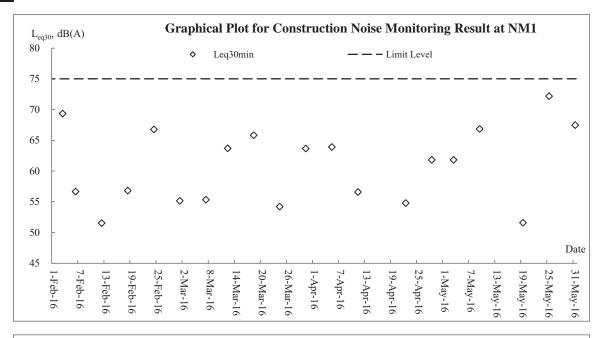

Air Quality - 24-hour TSP

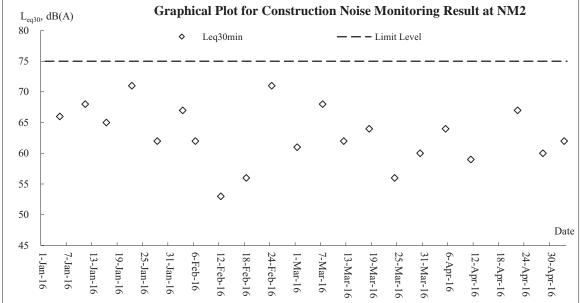


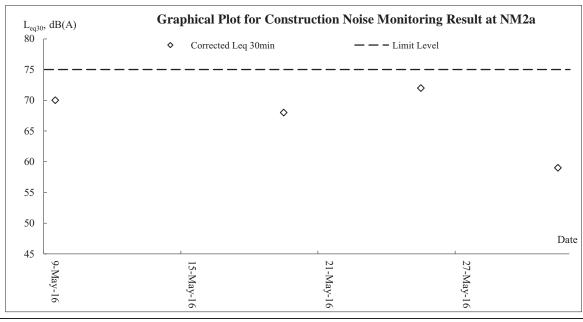


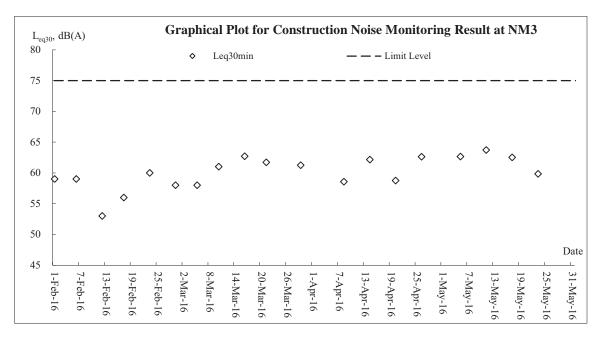


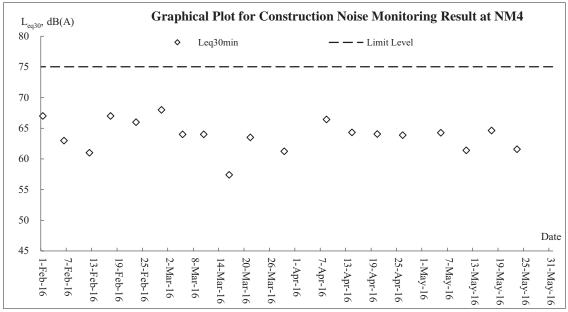


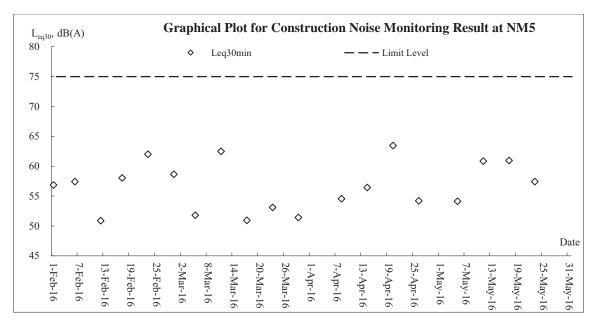


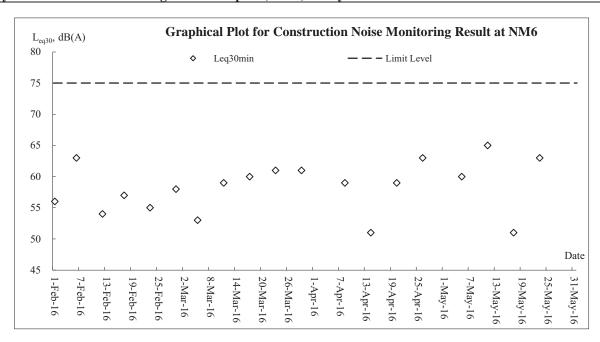


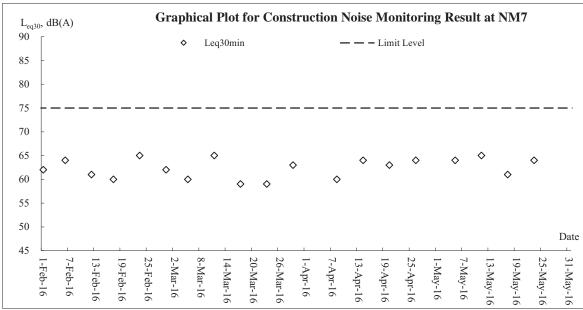


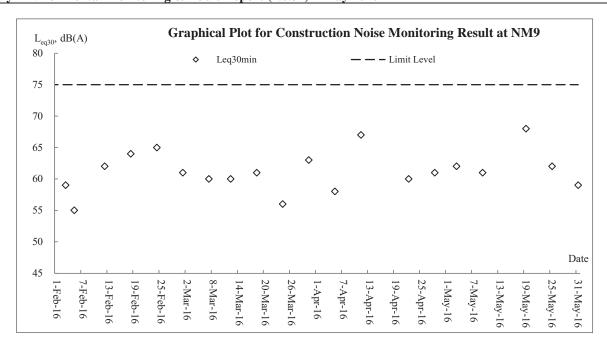

Noise

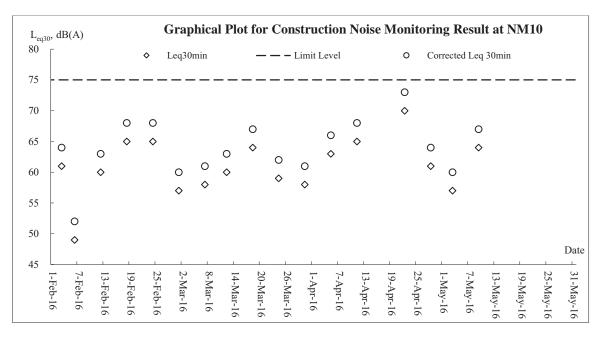


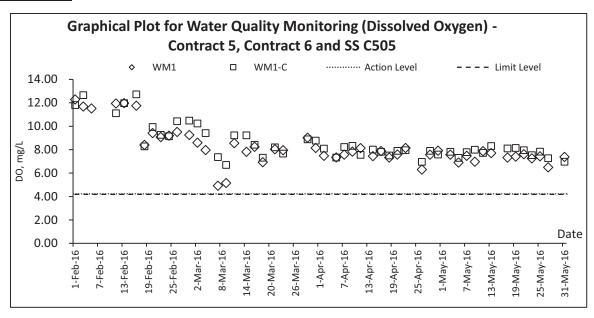


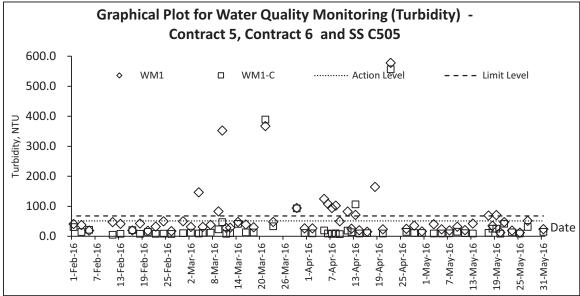


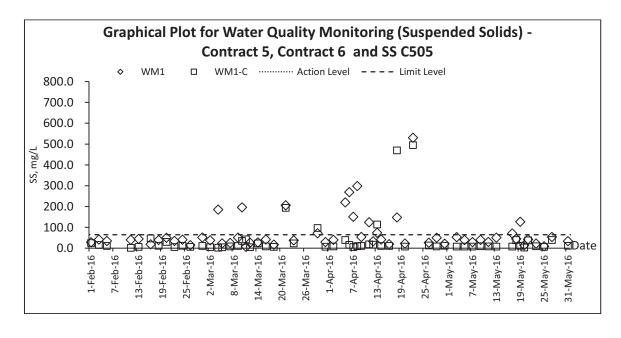


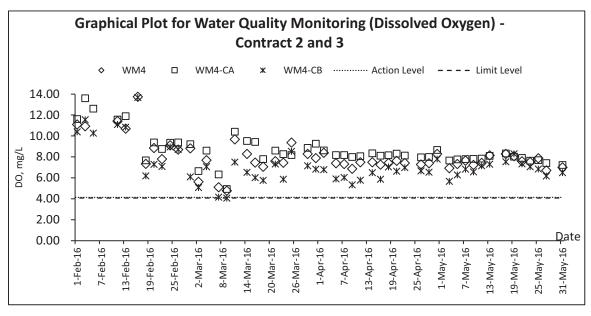


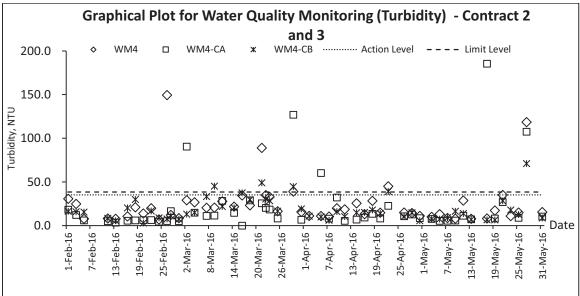


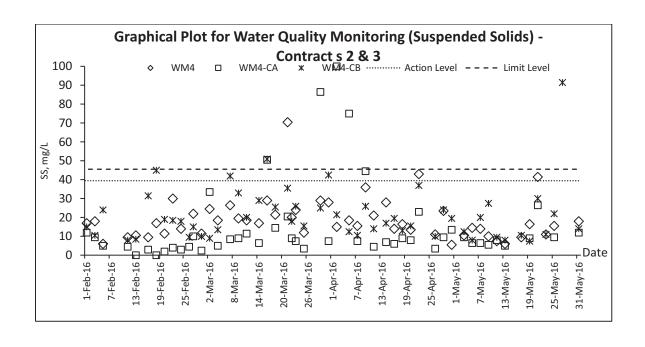


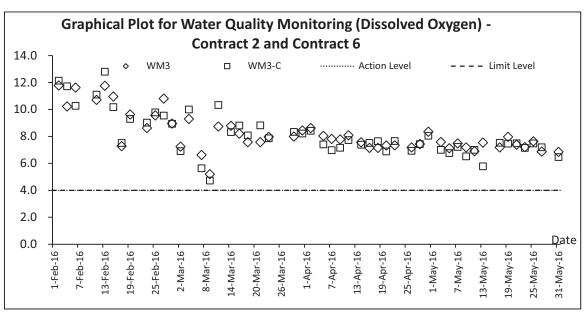


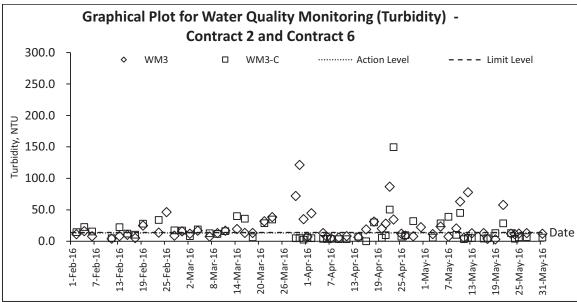


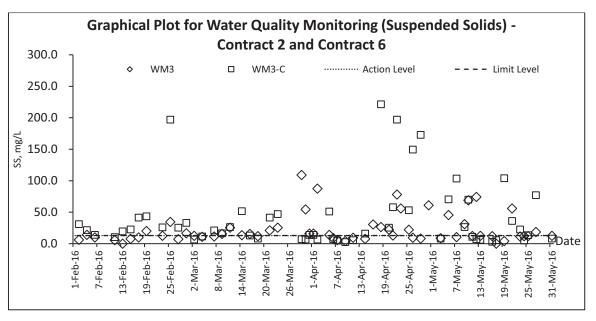

Water Quality

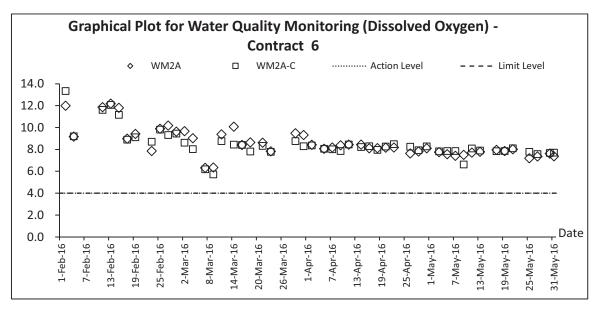


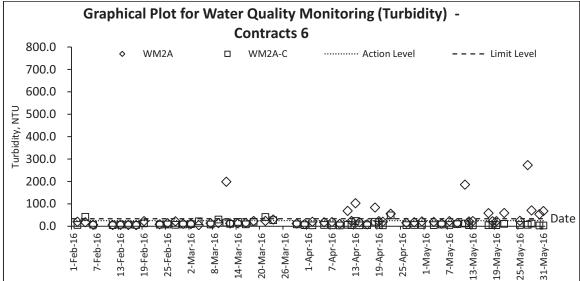


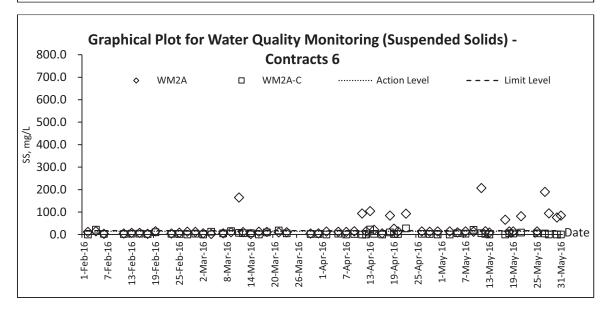


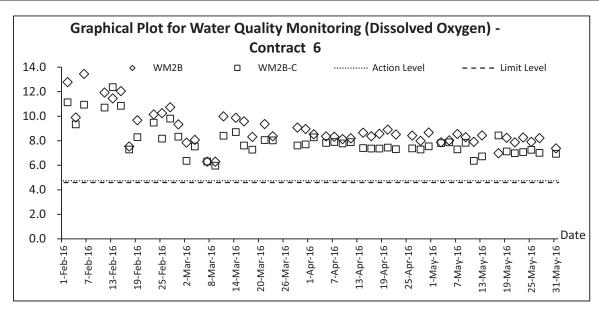


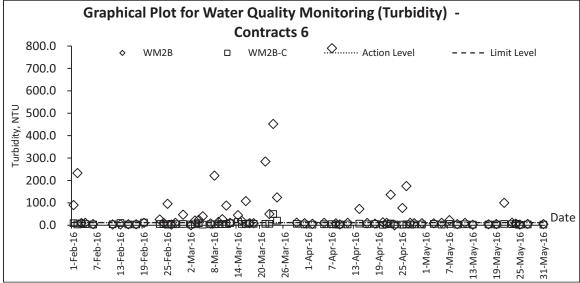


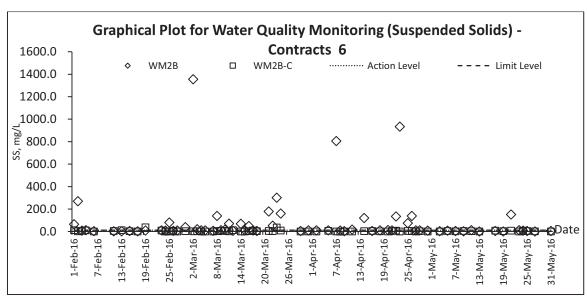












Appendix K

Meteorological Data

				r	Га Kwu	Ling Station	1
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Directio n
1-May-16	Sun	Cloudy with a few showers	3.1	22.5	7	89	SE
2-May-16	Mon	Mainly cloudy with showers.	0.3	25.7	7.2	87.5	E/NE
3-May-16	Tue	Mainly cloudy with showers.	30.7	26.7	6	83	E/NE
4-May-16	Wed	Mainly cloudy with isolated showers.	Trace	25.6	6.1	85.5	E/NE
5-May-16	Thu	Hot with sunny intervals during	0	28	8.5	79	S
6-May-16	Fri	Hot with sunny periods and a few showers.	0	Maintenan ce	8.5	Maintenance	E/NE
7-May-16	Sat	Hot with sunny intervals during	0	28.1	7	82	SE
8-May-16	Sun	Hot with sunny periods and a few showers.	0	28.6	5.2	78.2	E/NE
9-May-16	Mon	Hot with sunny periods and a few showers.	0	28.9	9	75	S/SE
10-May-16	Tue	Cloudy with a few showers	60.3	25.5	9.1	87.5	E/SE
11-May-16	Wed	Hot with sunny periods and a few showers.	0	25.7	7.5	71	N/NW
12-May-16	Thu	Cloudy with a few showers	Trace	26.2	9	87.2	Е
13-May-16	Fri	Mainly cloudy. Sunny intervals in the afternoon.	Trace	26.5	7.5	90.7	E/NE
14-May-16	Sat	Cloudy with a few showers	4.7	27.2	9	80	Е
15-May-16	Sun	Mainly cloudy. Sunny intervals in the afternoon.	1	24.9	6.7	81.2	E/NE
16-May-16	Mon	Cloudy with a few showers	0.3	24.9	11	68.5	N/NW
17-May-16	Tue	cloudy with one or two rain	1.2	24.2	8.2	79.2	Е
18-May-16	Wed	cloudy with one or two rain	0	25.2	11.5	67.5	Е
19-May-16	Thu	Cloudy with a few showers	Trace	25.9	10.5	79	Е
20-May-16	Fri	Mainly fine and hot. Light to moderate east to southeasterly winds.	16.1	25.2	13.9	89.7	Е
21-May-16	Sat	Mainly fine and hot. Light to moderate east to southeasterly winds.	37.6	26.4	9	86	N/NE
22-May-16	Sun	Mainly fine and hot. Light to moderate east to southeasterly winds.	0	27	7	83.5	E/SE
23-May-16	Mon	Mainly fine and hot. Light to moderate east to southeasterly winds.	Trace	26.9	3.7	72.7	S/SE
24-May-16	Tue	Mainly fine and hot. Light to moderate east to southeasterly winds.	Trace	27.6	8.2	80.5	SE
25-May-16	Wed	Mainly fine and hot. Light to moderate east to southeasterly winds.	Trace	27.8	8.2	80.5	SE
26-May-16	Thu	Mainly cloudy with a few showers. Moderate to fresh easterly winds.	0.1	28.1	10.7	80.7	Е
27-May-16	Fri	Mainly fine and very hot.	14.4	28	10.2	86	E/SE
28-May-16	Sat	Mainly fine and very hot.	62.9	28	8	88	SE
29-May-16	Sun	Mainly fine and very hot.	0.8	28.4	7.5	79.2	N/NE
30-May-16	Mon	Mainly fine and very hot.	0.1	29.7	8	78.2	W/SW
31-May-16	Tue	Mainly fine and very hot.	0	29.5	8.5	77.5	N/NW

Appendix L

Waste Flow Table

CEDD Name of Department:

Contract No./ Work Order No.:

CV/2012/08

Appendix I - Monthly Summary Waste Flow Table for 2016

(All quantities shall be rounded off to 3 decimal places)

		Actual Quantitie	ss of Inert C&D Materia	Actual Quantities of Inert C&D Materials Generated / Imported (in '000 m3)	d (in '000 m3)			Actual Quantities o	Actual Quantities of Other C&D Materials / Wastes Generated	Wastes Generated	
Month	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Meta1	Paper/ Cardboard Packaging	Plastic (bottles/containers, plastic sheets/ foams from package material)	Chemical Waste	Others (e.g. General Refuse etc.)
	[a+b+c+d)	(a)	(b)	(c)	(p)		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
January	72.2029	0.0000	0.6482	31.8061	39.7486	0.7684	26.2000	0.0000	0.0000	1.2320	0.1247
February	55.6715	0.0000	1.0145	38.3484	16.3085	0.9343	8.3800	0086.0	0.0000	1.4080	0.1089
March	34.1757	0.0000	0.3241	29.3514	4.5003	1.0325	44.1700	000000	0.0000	11.9680	0.0732
April	86.9048	0.0000	0.7045	32.8811	53.3191	1.4230	23.6420	0.4000	0.0000	1.6456	0.1306
May	77.5386	0.0000	0.1268	38.9050	38.5068	2.5292	44.8000	0.3500	0.0000	2.7280	0.1246
June	0.0000										
Half-year total	326.4935	0.0000	2.8182	171.2920	152.3833	6.6875	147.1920	1.7300	0.0000	18.9816	0.5620
July	0.0000										
August	0.0000										
September	0.0000										
October	0.0000										
November	0.0000										
December	0.0000										
Yearly Total	326.4935	0.0000	2.8182	171.2920	152.3833	6.6875	147.1920	1.7300	0.0000	18.9816	0.5620

(All quantities shall be rounded off to 3 decimal places)

		Actual Quantitie	's of Inert C&D Mater.	Actual Quantities of Inert C&D Materials Generated / Imported (in '000	ed (in '000 m3)			Actual Quantities of	Actual Quantities of Other C&D Materials / Wastes Generated	Wastes Generated	
Year	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (bottles/containers, plastic sheets/ foams from package material)	Chemical Waste	Others (e.g. General Refuse etc.)
	[a+b+c+d)	(a)	(b)	(c)	(p)		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
2013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2014	425.4406	0.0000	2.7362	376.3945	46.3099	5.6245	3.2100	0.4390	0.0070	10.8800	2.2609
2015	570.9459	0.0000	20.8159	543.2162	6.9138	4.5492	14.1300	3.9220	1.5000	16.1920	1.1696
2016	326.4935	0.0000	2.8182	171.2920	152.3833	6.6875	147.1920	1.7300	0.0000	18.9816	0.5620
2017											
2018											
Total	1322.8800	0.0000	26.3703	1090.9028	205.6070	16.8611	164.5320	6.0910	1.5070	46.0536	3.9925

Remark:

1) Density of C&D material to be

2) Density of General Refuse to be

metric ton/m3 metric ton/m3 2.2 1.6

0.88

3) Density of Spent Oil to be

metric ton/m3

Name of Department: CEDD

Monthly Summary Waste Flow Table for 2016 (year)

	Actua	Quantities	of Inert C&D	Actual Quantities of Inert C&D Materials Generated Monthly	enerated Mc	nthly	Actual	Quantities of	Actual Quantities of C&D Wastes Generated Monthly	Generated	Monthly
		Hard Rock									
	Total	and Large	Reused in	Reused in	Disposed			Paper/			Others, e.g.
Month	Quantity	Broken	the	other	as Public	Imported		cardboard		Chemical	general
	Generated	Concrete	Contract	Projects	Fill	Fill	Metals	packaging	Plastics	Waste	refuse
	(in '000m³)	(in '000m³)	$(in \ 1000m^3) (in \ 1000m^3) (in \ 1000m^3) $		(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in m³)	(in '000m³)
Jan	2.683	0.253	0.030	0.000	2.400	0.799	0.001	0.000	0.000	0.000	0.115
Feb	1.877	0.651	0.020	0.000	1.205	1.141	0000	0.000	0.000	0.000	0.110
Mar	1.501	0.417	0.000	0.000	1.084	0.831	0.000	0.000	0.001	0.000	0.090
Apr	0.472	0.046	0.018	0.000	0.408	0.647	0.000	0.000	0.000	0.000	0.135
Мау	0.488	0.013	0.000	0.000	0.475	2.479	0.000	0.000	0.000	0.000	0.105
unſ											
Sub-total	7.021	1.380	0.068	0.000	5.573	5.898	0.001	0.000	0.001	0.000	0.555
lnſ											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	7.021	1.380	0.068	0.000	5.573	5.898	0.001	0.000	0.001	0.000	0.555

Note: 1. Assume the density of soil fill is 2 ton/m³.

2. Assume the density of rock and broken concrete is 2.5 ton/m³.

3. Assume each truck of C&D wastes is $5m^3$.

4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.

5. The slurry and bentonite are disposed at Tseung Kwun O 137.

6. The non-inert C&D wastes are disposed at NENT.

7. Assume the density of metal is $7,850 \text{ kg/m}^3$.

Name of Department: CEDD

Monthly Summary Waste Flow Table for 2016

	A	Actual Quantities of Inert C&D Materials Generated Monthly	of Inert C&D M	Saterials General	ated Monthly	,	Actual Q	Actual Quantities of C&D Wastes Generated Monthly	&D Wastes	Generated	Monthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	$(in 1000m^3)$	(in '000m ³)	$(in 1000m^3)$	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
JAN	0	0	0	0	0	0.235	0	0	0	0	90.0
FEB	0	0	0	0	0	0.141	0	0	0	0	0.045
MAR	0	0	0	0	0	0.1785	0	0	0	0	0.055
APRIL	0	0	0	0	0	0	0	0	0	0	0.03
MAY	0	0	0	0	0	0	0	0	0	0	0.015
NOC											
Sub Total	0	0	0	0	0	0.5545	0	0	0	0	0.205
JUL											
AUG											
SEP											
OCT											
NOV											
DEC											
Total	0	0	0	0	0	0.55	0	0	0	0	0.205

Notes:

Monthly Summary Waste Flow Table for 2016 (year)

Name of Person completing the record: KM LUI (EO)

Project: Liangtang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 6

Contract No.: CV/2013/08

,		Actual Quantiti	ies of Inert C&I	D Materials Ger	Actual Quantities of Inert C&D Materials Generated Monthly		Act	ual Quantities	of C&D Wastes	Actual Quantities of C&D Wastes Generated Monthly	nthly
Month	Total Quantity Generated	Hard Rock and Large Broken	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
		COHOLOGO							(see Note 3)		
	$(in '000m^3)$	$(in \ 1000m^3)$	$(in 1000m^3)$	(in '000m ³)	$(in 1000m^3)$	$(in \cdot 000m^3)$	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	$(in \cdot 600 m^3)$
Jan	58.943	0	3.811	12.131	43.001	31.248	0	0	0	0	0.695
Feb	74.418	0	8.785	39.85	25.783	6.552	0	0.097	0	0	0.339
Mar	43.764	0	6.438	12.034	25.292	3.288	0	0.208	0.007	0	0.042
Apr	33.767	0	1.933	5.759	26.075	0	0	0.221	0	0	0.070
May	51.115	0	3.229	17.469	30.417	0.928	0	0	0	0	0.079
Jun											
Sub-total	262.007	0	24.196	87.243	150.568	42.016	0	0.524	0.007	0	1.225
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	431.23	0	42.73	104.027	284.473	49.265	0	0.818	0.007	32.28	4.301

(1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

Notes:

⁽²⁾ Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.

⁽³⁾ Broken concrete for recycling into aggregates.

MONTHLY SUMMARY WASTE FLOW TABLE

CEDD
epartment:
ume of Dep
2

Contract Title: Liantang/ Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works – Contract 7

Contract No.:

NE/2014/03

Monthly Summary Waste Flow Table for 2016 (year)

Month Anoth Month Generated Generated Com (in '000m³) Total Quantity Large Com (in '000m³) Hard R Com (in '0 May) May 0 0 Apr 0 0 June 0 0 July 0 0 Aug 0 0	ck and roken rete (m3)								•	
	00m3) 0 0	Keused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastic (see Note 3)	Chemical Waste	Others, e.g. general refuse
	0 0	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
	0 0	0	0	0	0	0	0	0	0	0
	0	0	0	0.16	0	0	0	0	0	0
		0	0	0.135	0	0	0	0	0	0.005
	0	0	0	0.313	0	0	0	0	0	0.005
	0	0	0	0.505	0	0	0	0	0	0
	0	0	0	1.113	0	0	0	0	0	0.01
0	0	0	0	1.113	0	0	0	0	0	0.01

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site. (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Form No. D/OI.03/09.002	
rchitectural Services Department	

Contract No. / Works Order No.: -

SSC505

Monthly Summary Waste Flow Table for 2016 [year] [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

	r Projects Disposed of as Public Fill	$(in \cdot (0.00m^3))$	0.800	0.858	0.793	0.1105	0.013		2.574							2.574
renerated Monthly	(d) Reused in other Projects	(in '000m³)	0	0	0	0	0		0							0
Actual Quantities of Inert Construction Waste Generated Monthly	(c) Reused in the Contract	(in '000m³)	0	0	0	0	1.074		1.074							1.074
Actual Quantities of In	(b) Broken Concrete (see Note 4)	(in '000m³)	0	0	0	0	0		0							0
	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	$(in \cdot 000m^3)$	0.800	0.858	0.793	0.1105	1.087		3.648							3.648
	Month		Jan	Feb	Mar	Apr	May	Jun	Sub-total	Jul	Aug	Sep	Oct	Nov	Dec	Total

Form No. D/OI.03/09.002	
itectural Services Department	
Architectur	

	Ger dis	— Landfill	(in '000m³)	led generated	0.072	.1 0.065	5 0.059	4 0.091	3 0.156		0.442							8 0 442
	Other Recyclable Materials	(see Page 3)	(in '000kg)	recycled	0.000	0.021	0.05	0.084	0.153		0.308							0.308
	Other F Ma	(see	, ui)	generated	0.000	0.021	0.05	0.084	0.153		0.308							0 308
onthly	ıl Waste		00kg)	recycled	0.000	0.000	0	0	0		0							0
Generated Mo	Chemical Waste		(in '000kg)	generated	0.000	0.000	0	0	0		0							0
action Waste	tics ote 3)	`	00kg)	recycled	0.000	0.000	0	0	0		0							0
Actual Quantities of Non-inert Construction Waste Generated Monthly	Plastics (see Note 3)	,	(in '000kg)	generated	0.000	0.000	0	0	0		0							U
ntities of Non	ırdboard ıging	o o	00kg)	recycled	0.000	0.0186	0.044	60.0	0		0.1526							0.1526
Actual Qua	Paper/ cardboard packaging	4	(in '000kg)	generated	0.000	0.0186	0.044	60.0	0		0.1526							0.1526
	als		00kg)	recycled	4.73	0.0004	52.752	1465.5906	1587.5818		3093.6748							3093,6748
	Metals		(in '000kg)	generated	4.73	0.0004	52.752	1465.5906	1587.5818		3093.6748							3093.6748
	ber		00kg)	recycled	0.000	0.000	0	0	0		0							0
	Timber		(in '000kg)	generated	0.000	0.000	0	0	0		0							0
	Month	IMIOIMI			Jan	Feb	Mar	Apr	May	Jun	Sub-total	Jul	Aug	Sep	Oct	Nov	Dec	Total

First Issue Date - 20:07:2009 Current Issue Date - 21:09:2011

•	
	₹
-	
	_
	<u> </u>
,	
	Ť

Architectural Services Department

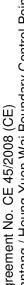
ation into fertilizers	0
at to YY site for transform	0
Kkg of used timber was ser	1529.42 tons of scrap metals from LCAL were sent to Hop Hing subcontractors were sent for recycling.
any for the month e.g. XX	1529.42 tons of scrap metals from LCAL were sent to Hop Hing for recycling.
Description of mode and details of recycling if any for the month e.g. XX kg of used timber was sent to YY site for transformation into fertilizers	153kg of glass bottles were sent to Action Health for recycling
Description of mode	11.8kg of cans were sent to Wong Kei for v recycling.

 ± 20040 Notes:

The performance targets are given in the Particular Specification on Environmental Management Plan.

The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site.

Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.


Broken concrete for recycling into aggregates. If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to $6.5~\rm{m}^3$ by volume.

First Issue Date - 20:07:2009 Current Issue Date - 21:09:2011

Appendix M

Implementation Schedule for Environmental Mitigation Measures

	פוומו ועוכו	Elivipoliilelitai ivioliitoliilig alid Addit ivialidai					
EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	I		& Main Concerns to address	measure?		measure?	achieve?
Air Qualit	y Impact (Air Quality Impact (Construction)					
3611	9.1	General Dust Control Measures	To minimize	Contractor	Construction	During	FIA Becommendation
-	<u>.</u>		adverse dust		Works Sites	Construction	and Air Pollution
		l ne tollowing dust suppression measures snould be implemented:	emission generated				Control (Construction
		 Frequent water spraying for active construction areas (4 times per 	from various				Dust) Regulation
		day for active areas in Po Kak Tsai and 8 times per day for all other	construction				
		active areas), including areas with heavy construction and slope	activities of the				
		cutting activities	works sites				
		 80% of stockpile areas should be covered by impervious sheets 					
		 Speed of trucks within the site should be controlled to about 10 					
		km/hr					
		All haul roads within the site should be paved to avoid dust					
		emission due to vehicular movement					
36.12	2	Best Practice for Dust Control	To minimize	Contractor	Construction	Dilring	FIA Becommendation
5.	-			00111100	Works Citos	Construction of	
		The relevant best practices for dust control as stipulated in the Air	adverse dust		Works Sites	Construction	and Air Pollution
		Pollution Control (Construction Dust) Regulation should be adopted to	from various				Collinal (Collisting)
		turther reduce the construction dust impacts of the Project. These best	construction				Dasi) i egalation
		practices include:	activities of the				
		Good site management	works sites				
		 The Contractor should maintain high standard of housekeeping to 					
		prevent emission of fugitive dust.					
		 Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to 					
		IIIIIIIIIZE [ITE FERASE OF VISIDIE QUST ETTISSIOF].					
		 Any piles of materials accumulated on or around the work areas should be cleaned up regularly. 					
		 Cleaning, repair and maintenance of all plant facilities within the 					
		work areas should be carried out in a manner minimizing generation of fugitive dust emissions.					
		 The material should be handled properly to prevent fugitive dust emission before cleaning. 					
		Disturbed Parts of the Roads					
		Each and every main temporary access should be paved with					

Agreement No. CE 45/2008 (CE) Tantang / Hering Yijen Wai Borindary Gontrol Po

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works Environmental Monitoring and Audit Manual

EIA Ref.

Mott MacDonald

concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or

Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet.

Exposed Earth

 Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies.

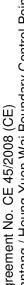
Loading, Unloading or Transfer of Dusty Materials

 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet.

Debris Handling

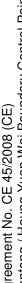
- Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three
- Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped.

Transport of Dusty Materials

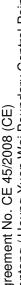

 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards.

Wheel washing

 Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.


Use of vehicles

- Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.
- Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.



	וומו ואוכוי	Eliviioliilelita ivioliitoliilg alid Addit ivialidal					
EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	ier.		& Main Concerns to address	measure?		measure?	achieve?
		Site hoarding					
		■ Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit.					
		Blasting					
		 The areas within 30m from the blasting area should be wetted with water prior to blasting. 					
Air Qualit	Air Quality Impact (Operation)	peration)					
000	0	Lobin con of limit control of last to the part of limit of last to the part of last to the part of last of las		000	000	:0:0:0	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
		The treatment work will be totally enclosed. Negative pressure ventilation will be provided within the enclosure to avoid any fugitive odorous emission from the treatment work. Further odour containment will be achieved by covering or confining the sewage channels, sewage tanks, and equipment with potential odour emission. Proper mixing will be provided at the equalization and sludge holding tanks to prevent sewage septicity.	impact from operation of the proposed sewage treatment work at BCP				
		 Chemical or biological deodorisation facilities with a minimum 					
		odour removal efficiency of 90% will be provided to treat potential					
		channels / tanks, tilter press and screening facilities so as to minimize any potential odour impact to the nearby ASRs.					
Noise Imp	Noise Impact (Construction)	ruction)					
4.4.1.4	3.1	Adoption of Quieter PME	To minimize the	Contractors	Construction	During	EIA recommendation,
		Use of the recommended quieter PME such as those given in the BS5228: Part 1:2009 and presented in Table 4.14 , which can be found in Hong Kong.	construction air- borne noise impact		Work Sites	Construction	EIAO and Noise Control Ordinance (NCO)



)		D					
			Objectives of the	Who to			What requirements
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Measure Main Concerns	implement the	Location of the measure	When to implement the measure?	or standards for the measure to
			to address	illeasale :			aciicae:
4.4.1.4	3.1	Use of Movable Noise Barrier	To minimize the	Contractors	Construction	During	EIA recommendation,
		The use of movable barrier for certain PME can further alleviate the construction noise impacts. In general, a 5 dB(A) reduction for movable	construction air- borne noise impact		Work Sites	Construction	EIAO and NCO
		PME and 10 dB(A) for stationary PME can be achieved depending on the actual design of the movable noise barrier. The Contractor shall be					
		responsible for design of the movable noise barrier with due					
		consideration given to the size of the PME and the requirement for					
		intercepting the line of sight between the NSHs and PME. Barrier material with surface mass in excess of 7 ${\rm kg/m^2}$ is recommended to					
		achieve the predicted screening effect.					
4.1.4	3.1	Use of Noise Enclosure/ Acoustic Shed	To minimize the	Contractors	Construction	During	EIA recommendation,
		The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the GW-TM.	construction air- borne noise impact		Work Sites	Construction	EIAO and NCO
4.1.4	3.1	Use of Noise Insulating Fabric	To minimize the	Contractors	Construction	During	EIA recommendation,
		Noise insulating fabric can be adopted for certain PME (e.g. drill rig, pilling auger etc). The insulating fabric should be lapped such that	construction air- borne noise impact		Work Sites	Construction	EIAO and NCO
		there are no openings or gaps on the joints. Technical data from					
		manufacturers state that by using the Fabric, a noise reduction of over 10 dB(A) can be achieved on noise level.					

	22.2	בוואווסווווסווומן אוסווווסווווק מווס אממון ואומווממו					
			Objectives of the	Who to			What requirements
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Measure	implement the	Location of the measure	when to implement the	or standards for the measure to
			& Main Concerns to address	measure?		measure?	achieve?
4.1.4	3.1	Good Site Practice	To minimize the	Contractors	Construction	During	EIA recommendation,
		The good site practices listed below should be followed during each phase of construction:	construction air- borne noise impact		Work Sites	Construction	EIAO and NCO
		 Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; 					
		 Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme; 					
		 Mobile plant, if any, should be sited as far from NSRs as possible; 					
		 Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 					
		 Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and 					
		 Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 					
Noise Im	Noise Impact (Operation)	ation)					
		Road Traffic Noise					
Table 4.42 and Figure 4.20.1 to 4.20.4	3.2	Erection of noise barrier/ enclosure along the viaduct section.	To minimize the road traffic noise along the connecting road of BCP	Contractor	Loi Tung and Fanling Highway Interchange	Before Operation	EIAO and NCO
		Fixed Plant Noise					
Table 4.46	3.2	Specification of the maximum allowable sound power levels of the proposed fixed plants during daytime and night-time.	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all	Before Operation	EIA recommendation, EIAO and NCO

EIA Ref.	ш	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	Ket.		& Main Concerns to address	tne measure?	measure	measure?	measure to achieve?
4.5.2.4	3.2	The following noise reduction measures shall be considered as far as practicable during operation:	To minimize the fixed plant noise	Managing Authority of	BCP, Administration	Before Operation	EIAO and NCO
		 Choose quieter plant such as those which have been effectively silenced; 	impact	the buildings / Contractor	Building and all ventilation		
		 Include noise levels specification when ordering new plant (including chillier and E/M equipment); 			sbilling		
		 Locate fixed plant/louver away from any NSRs as far as practicable; 					
		 Locate fixed plant in walled plant rooms or in specially designed enclosures; 					
		 Locate noisy machines in a basement or a completely separate building; 					
		 Install direct noise mitigation measures including silencers, acoustic louvers and acoustic enclosure where necessary; and 					
		 Develop and implement a regularly scheduled plant maintenance programme so that equipment is properly operated and serviced in order to maintain a controlled level of noise. 					
Water Q	uality Impa	Water Quality Impact (Construction)					
5.6.1.1	4.1	Construction site runoff and drainage	To control site	Contractor	Construction	Construction	Practice Note for
		The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts: At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the Contractor prior to the commencement of construction.	runoff and drainage; prevent high sediment loading from reaching the nearby watercourses		Works Sites	Phase	Professional Persons on Construction Site Drainage (ProPECC Note PN 1/94)

The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.

Agreement No. CE 45/2008 (CE)

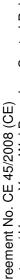
Liantang / Heung Yuen Wai Boundary Control Point and Associated Works Environmental Monitoring and Audit Manual

What requirements or standards for the measure to achieve?
When to implement the measure?
Location of the measure
Who to implement the measure?
Objectives of the Recommended Measure & Main Concerns to address
Recommended Mitigation Measures
EM&A Ref.
EIA Ref.

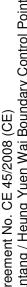
discharge into stormwater drainage system through a sediment/silt permanent drainage channels to enhance deposition rates, if Temporary ditches should be provided to facilitate the runoff trap. The sediment/silt traps should be incorporated in the

- The design of efficient silt removal facilities should be based on the basins should be provided to remove sand/silt particles from runoff guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may sand/silt traps should be undertaken by the Contractor prior to the to meet the requirements of the TM standards under the WPCO. Sand/silt removal facilities such as sand/silt traps and sediment vary depending upon the flow rate. The detailed design of the commencement of construction.
- should be regularly inspected and maintained to ensure proper and Deposited silt and grit should be regularly removed, at the onset of All drainage facilities and erosion and sediment control structures efficient operation at all times and particularly during rainstorms. and after each rainstorm to ensure that these facilities are functioning properly at all times.
- excavations should be discharged into storm drains via silt removal Measures should be taken to minimize the ingress of site drainage necessary, they should be dug and backfilled in short sections into excavations. If excavation of trenches in wet periods is wherever practicable. Water pumped out from foundation facilities.
- out well before the arrival of a rainstorm. Other measures that need surfaces should be covered by tarpaulin or other means, as far as excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried practicable, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Interception channels should be provided (e.g. along the crest/edge of the If surface excavation works cannot be avoided during the wet season (April to September), temporarily exposed slope/soil to be implemented before, during and after rainstorms are summarized in ProPECC Note PN 1/94.
- The overall slope of the site should be kept to a minimum to reduce

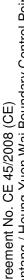
EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	Ret.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
		the erosive potential of surface water flows.					
		All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.					
		Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.					
		 Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers. 					
		Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.					
		Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.					
5.6.1.1	4.1	Good site practices for works within water gathering grounds The following conditions should be complied, if there is any works to be carried out within the water gathering grounds:	To minimize water quality impacts to the water gathering grounds	Contractor	Construction Works Sites within the water gathering	Construction Phase	ProPECC Note PN 1/94
	; ;						


Agreement No. CE 45/2008 (CE)

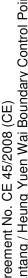
Liantang / Heung Yuen Wai Boundary Control Point and Associated Works Environmental Monitoring and Audit Manual


	What requirements or standards for the measure to achieve?	
	When to implement the measure?	
	When to weasure measure?	grounds
	Who to implement the measure?	
	Objectives of the Recommended Measure & Main Concerns to address	
	Recommended Mitigation Measures	Adouting a critical of bottomological built and blinds society actions of bottomological
	EM&A Ref.	•
)	EIA Ref.	

- Adequate measures should be implemented to ensure no pollution or siltation occurs to the catchwaters and catchments.
- materials that may possibly cause contamination to water gathering No earth, building materials, oil or fuel, soil, toxic materials or any grounds are allowed to be stockpiled on site.
- All surplus spoil should be removed from water gathering grounds as soon as possible.
- Temporary drains with silt traps should be constructed at the site boundary before the commencement of any earthworks.
- Regular cleaning of silt traps should be carried out to ensure proper operation at all time.
- All excavated or filled surfaces which have the risk of erosion should always be protected form erosion.
- Facilities for washing the wheels of vehicles before leaving the site should be provided
- catchments due to the leakage of oil or fuel should be removed off Any construction plant which causes pollution to catchwaters or site immediately.
- should be discharged via oil/petrol separators and sand/silt removal absorbents and waste oils should be collected in designated tanks maintenance should be confined to designated paved areas only prior to disposal off site. All storm water run-off from these areas No maintenance activities which may generate chemical wastes should be undertaken in the water gathering grounds. Vehicle and any spillages should be cleared up immediately using
- contaminated soil should be replaced by suitable material approved Any soil contaminated with fuel leaked from plant should be removed off site and the voids arising from removal of by the Director of Water Supplies.
- insecticide of any kind are subject to the approval of the Director of Provision of temporary toilet facilities and use of chemicals or Water Supplies.
- Drainage plans should be submitted for approval by the Director of



EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	HeI.		& Main Concerns to address	ine measure?	measure	measure?	measure to achieve?
		Water Supplies.					
		 An unimpeded access through the waterworks access road should always be maintained. 					
		 Earthworks near catchwaters or streamcourses should only be carried out in dry season between October and March, 					
		 Advance notice must be given before the commencement of works on site quoting WSD's approval letter reference. 					
5.6.1.2	4.1	/ities	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby stormwater drain. Stockpiles of cement and other construction materials should be kept covered when not being used.	quality impacts		works sites	phase	
		Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby stormwater drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.					
5.6.1.3	4.1	Sewage effluent from construction workforce	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	quality impacts		works sites with on-site sanitary facilities	phase	and Water Pollution Control Ordinance (WPCO)
5.6.1.4	4.1	Hydrogeological Impact	To minimize water	Contractor	Construction	Construction	EIA Recommendation
		Grout injection works would be conducted before blasting, for sealing a limited area around the tunnel with a grout of a suitable strength for controlling the potential groundwater inflows. The pre-injection grouting method would be supplemented by post-injection grouting where necessary to further enhance the groundwater inflow control. On-site treatment for the groundwater ingress pumped out would be required to remove any contamination by grouting materials before discharge off-site.	quality impacts		works sites of the drill and blast tunnel	phase	and WPCO
Water Qu	ality Impa	Water Quality Impact (Operation)					
		No mitigation measure is required.					



Environm	ental Mor	Environmentai Monitoring and Audit Manuai					
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the	When to implement the	What requirements or standards for the measure to
			& Main Concerns to address	measure?		measure?	achieve?
Sewage a	nd Sewera	Sewage and Sewerage Treatment Impact (Construction)					
6.7	2	The sewage generated by the on-site workforce should be collected in chemical toilets and disposed of off-site by a licensed waste collector.	To minimize water quality impacts	Contractor	All construction works sites with on-site sanitary facilities	Construction phase	EIA recommendation and WPCO
Sewage a	nd Sewera	Sewage and Sewerage Treatment Impact (Operation)					
6.6.3	5	Sewage generated by the BCP and Chuk Yuen Village Resite will be collected and treated by the proposed on-site sewage treatment facility using Membrane Bioreactor treatment with a portion of the treated wastewater reused for irrigation and flushing within the BCP.	To minimize water quality impacts	DSD	ВСР	Operation phase	EIA recommendation and WPCO
6.5.3	2	Sewage generated from the Administration Building will be discharged to the existing local sewerage system.	To minimize water quality impacts	DSD	Administration Building	Operation phase	EIA recommendation and WPCO
Waste Ma	nagement	Waste Management Implication (Construction)					
		Adverse impacts related to waste management such as potential hazard, air, odour, noise, wastewater discharge and public transport as mentioned in section 3.4.7.2 (ii)(c) of the Study Brief are not expected to arise, provided that good site practices are strictly followed. Becommendations for good site practices during the construction activities include: Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training of site personnel in proper waste management and chemical handling procedures Provision of sufficient waste disposal points and regular collection of waste Dust suppression measures as required under the Air Pollution Control (Construction Dust) Regulation should be followed as far as practicable. Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by covering trucks or in	adverse environmental impact		works sites (general)	Phase	Waste Disposal Ordinance; Waste Disposal (Chemical Wastes) (General) Regulation; and ETWB TC(W) No. 19/2005, Environmental Management on Construction Site
		enclosed containers General refuse shall be removed away immediately for disposal. As					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the measure?	What requirements or standards for the
		such odour is not anticipated to be an issue to distant sensitive receivers	to address	measure			acnieve
		 Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction from public road 					
		 Covers and water spraying system should be provided for the stockpiled C&D material to prevent dust impact or being washed away 					
		 Designate different locations for storage of C&D material to enhance reuse 					
		 Well planned programme for transportation of C&D material to lessen the off-site traffic impact. Well planned delivery programme for offsite disposal and imported filling material such that adverse noise impact from transporting of C&D material is not anticipated 					
		 Site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be adopted as far as practicable, such as cleaning and maintenance of drainage systems regularly 					
		 Provision of cover for the stockpile material, sand bag or earth bund as barrier to prevent material from washing away and entering the drains 					
7.6.1.2	9	Waste Reduction Measures	To reduce the	Contractor	_	Construction	EIA recommendation
		Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	quantity of wastes		works sites (General)	Phase	and Waste Disposal Ordinance
		 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 					
		 Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force 					
		 Proper storage and site practices to minimise the potential for damage or contamination of construction materials 					
		 Plan and stock construction materials carefully to minimise amount 					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		of waste generated and avoid unnecessary generation of waste	to address				
		 In addition to the above measures, specific mitigation measures are recommended below for the identified waste arising to minimise environmental impacts during handling, transportation and disposal of these wastes. 					
7.6.1.3	9	C&D Materials	To minimize	Contractor	Construction	Construction	EIA recommendation;
		In order to minimise impacts resulting from collection and transportation of C&D material for off-site disposal, the excavated materials should be reused on-site as backfilling material as far as practicable. The surplus rock and other inert C&D material would be disposed of at the Government's Public Fill Reception Facilities (PFRFs) at Tuen Mun Area 38 for beneficial use by other projects in the HKSAR as the last resort. C&D waste generated from general site clearance and tree felling works would require disposal to the designated landfill site. Other mitigation requirements are listed below:	impacts resulting from C&D material		Works Sites (General)	Phase	Waste Disposal Ordinance; and ETWB TCW No. 31/2004
		 A Waste Management Plan should be prepared and implemented in accordance with ETWB TC(W) No. 19/2005 Environmental Management on Construction Site; and 					
		 In order to monitor the disposal of C&D material and solid wastes at public filling facilities and landfills, and to control fly-tipping, a trip-ticket system (e.g. ETWB TCW No. 31/2004) should be included. 					
7.6.1.4	9	General refuse	To minimize	Contractor	Construction	Construction	Waste Disposal
		General refuse should be stored in enclosed bins or compaction units separated from other C&D material. A reputable waste collector is to be employed by the Contractor to remove general refuse from the site separately. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' litter.	impacts resulting from collection and transportation of general refuse for off-site disposal		works sites (General)	phase	Ordinance and Public Health and Municipal Services Ordinance - Public Cleansing and Prevention of Nuisances Regulation
7.6.1.5	9	Chemical waste	To minimize	Contractor	Construction	Construction	Waste Disposal
		If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical	Impacts resulting from collection and transportation of chemical waste for off-site disposal		works sites (General)	pnase	(Chemical Waste) (General) Regulation and Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

Appendix N

Investigation Report for Exceedance

Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 1 June 2016

Our Ref TCS00694/13/300/**F0330** No of Pages 8 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM3 on 9, 10, 12

May 2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0315 dated 11 May 2016

TCS00694/13/300/F0340 dated 21 May 2016

TCS00694/13/300/F0320 dated 13 May 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully,

For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Simon Leung (ER of C6/ AECOM) Fax: 2251 0698 Mr. Antony Wong (IEC, SMEC) By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project Date Location Time Parameter	9 May 2016 16:05	10 May 2016	CE 45/2008 12 May 2016	12 May 2016
Location Time Parameter	,	10 Way 2010		
Time Parameter	16.05		WM3	12 Iviay 2010
Parameter		13:30	11:50	11:50
		J		
A add and T and I		Turbidity (NTU		Suspended Solids
Action Level	13.4 AND 120	the same day	ontrol station of	12.6 AND 120% of upstream control station of the same day
	14 0 AND 130		ontrol station of	12.9 AND 130% of upstream
Limit Level	11.0111(12)100	the same day	oneror station or	control station of the same day
Measured WM3-C	10.3	46.0	5.38	7.0
Level WM3	20.5	63.1	77.8	74.2
Exceedance	Limit Level	Limit Level	Limit Level	Limit Level
Investigation Results, Recommendations & Mitigation Measures	(CCKJV), at upstream works area 2. According 9 May 20 (Photo 1 are WM3-C. (Compared to the effluent discharge in the water are wisually cleaved and the water are wisually cleaved and the river channel. It up sediment create a cure exceedance of the treated discharge in the treated discharge in effluent qui impact was located. (Pilotto 1 are works are and the water are simple create and the river channel. It is sediment to the treated discharge in effluent qui impact was located. (Pilotto 1 are works area and the treated discharge in effluent qui impact was located. (Pilotto 1 are works area and the water area was located. (Pilotto 1 area works area and the water area with the	the main construit of WM3 was lare shown in Figure 16, the water quant 2) On 10 Ma Photo 3 and 4) bto 5 and 6) has carried out astewater treatment of the discharged nullah and Ng Tat the upstream of the Daily Eg Observatory, The flow rate of was observed that may follow mulative effect on 10 May 201 at site inspection effluent discharged and had not not all the discharged was observed that may follow mulative effect on 10 May 201 at site inspection effluent discharged had and Ng Tat ality was visually observed at the hoto 11 and figure on 12 May is	detion activities can be provided pile works. It is gure 1. It is a provided pile works. It is a provided pile works. It is a provided pile works and 2016, turbid works and 2016, turbid works and 2016 is a provided pile work. It is a provided pile work and Figure 1) The provided pile work and Figure 1) The provided pile work and Figure 1) The provided pile work and the water at work and the w	ring team during monitoring on and WM3-C was visually clear. As advised by the by EPD. It was observed that channel which connected to the isually clear. (Photo 7) Besides, he work area of C6 located was hus, it is considered that the ne construction activities of the resulting in turbid water in river M3-C was turbid and the stirred in to downstream at WM3 that y. Thus, it is considered that the heavy rainfall. Ind Contractor on 12 May 2016, any channel which connected to the heavy rainfall. Ind Contractor on 12 May 2016, any channel which connected to spected. It was observed that the and 10) Also, no adverse water WM3 where the work area of C6 tigation, it is considered that the to the construction activities of the spected. It was observed that the and 10 Also, no adverse water WM3 where the work area of C6 tigation, it is considered that the to the construction activities of

increased to daily due to the limit level exceedance recorded until no
exceedances were triggered in consecutive days. There were no exceedances
triggered in the additional monitoring result on 13 May 2016. Nevertheless,
The Contractor is reminded to fully implement the water mitigation
measures as recommended in the implementation schedule for
environmental mitigation measures in the EM&A Manual.

Prepared By:	Winnie Chiu
Designation:	Assistant Environmental Consultant
Signature :	Chin
Date :	1 June 2016

Photo Record

Photo 1 Visually clear water was observed at WM3 on 9 May 2016.

Photo 2
Water samples collected at WM3 and WM3-C on 9
May 2016 were visually clear.

Photo 3
Turbid water was observed at WM3 on 10 May 2016.

Photo 4Turbid water was observed at WM3-C on 10 May 2016.

Photo 5
Turbid water was observed at WM3 on 12 May 2016.

Photo 6
On 12 May 2016, water sample collected at WM3 was slightly more turbid than those collected at WM3-C.

AUES

Photo 7
On 9 May 2016, the effluent that discharged in the temporary channel which connected to the discharge nullah and Ng Tung River was visually clear.

Photo 8On 9 May 2016, the water at the upstream of WM3 was visually clear.

Photo 9
The effluent in the temporary channel which connected to the discharge nullah and Ng Tung River was visually clear on 12 May 2016.

Photo 10

The effluent in the temporary channel which connected to the discharge nullah and Ng Tung River was visually clear on 12 May 2016.

Photo 11 On 12 May 2016, the water at the upstream of WM3 was visually clear.

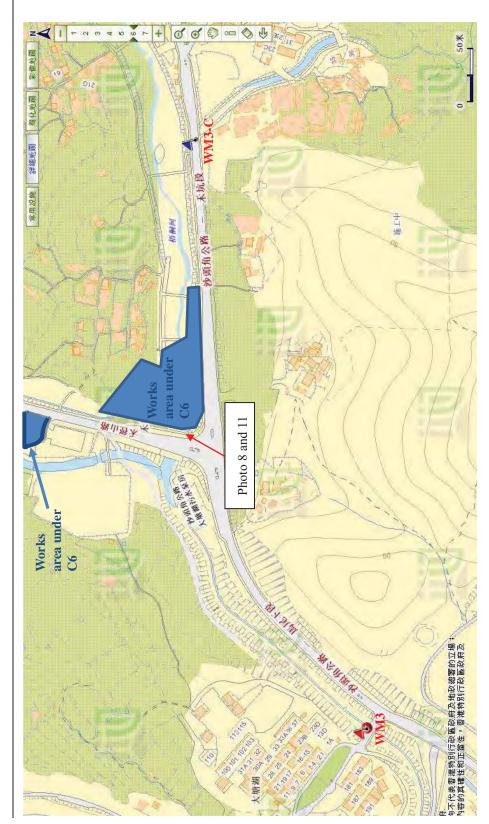


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Isohyet chart for 10 May 2016

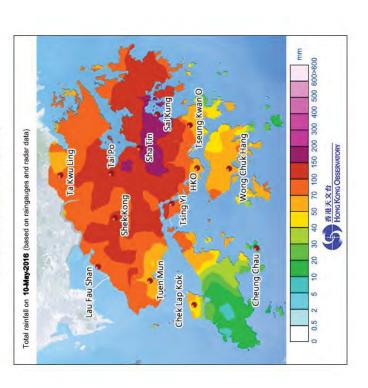


Figure 2 Rainfall distribution on 10 May 2016

To Mr. Roger Lee Fax No 2717 3299

Company Dragages Hong Kong Limited

 \mathbf{cc}

From Winnie Chiu Date 26 May 2016

Our Ref TCS00697/13/300/**F0331a** No of Pages 7 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM3 on 9, 10, 12

May 2016 (Contract 2)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0316 dated 11 May 2016 TCS00694/13/300/F0341 dated 21 May 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Gregory Lo (ER, AECOM) Fax: 2171 3498 Mr. Antony Wong (IEC, SMEC) By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project CE 45/2008 Date 9 May 10 May 12 May 12 May 2016						
2016 2016 2016 12 1414 2010	6					
Location						
Time 16:05 13:30 11:50 11:50						
Parameter Turbidity (NTU) Suspended Solids (note: 1.25)	(mg/L)					
13.4 AND 120% of upstream control 12.6 AND 120% of upstr	ream control					
Action Level station of the same day station of the same						
Limit Level 14.0 AND 130% of upstream control 12.9 AND 130% of upstr						
station of the same day station of the same	e day					
Measured WM3-C 10.3 46.0 5.38 7.0						
Level WM3 20.5 63.1 77.8 74.2						
Exceedance Limit Limit Limit Limit Limit Level						
Level Level Level						
	1. According to the site information provided from the Contractor of C2 (DHK), the construction activities carried out on 9, 10, 12 May 2016 at					
	admin building was building foundation works (rebar fixing and concreting)					
	and no discharge was made. The works area under C2 and the water					
Measures monitoring location WM3C and WM3 are shown in Figure 1.						
	2. According to the site records from the monitoring team during monitoring on					
	9 May 2016, the water quality at WM3 was slightly turbid. (Photo 1& 2) On					
10 and 12 May 2016, the water quality at WM3 and WM3-C (Photo 3, 4, 5, 6)	was turbid.					
3. According to the site photos from monitoring team on 9 May	2016 it was					
observed that there was no adverse water impact at the disc						
outside the site boundary. (Photo 9)						
4. During weekly joint site inspection on 13 May 2016 with ET, I						
Contractor, it was observed that building foundation works was of Admin Building and the site area was mostly hard paved						
Temporary drainage system and water treatment system w						
implemented. The discharge nullah outside the site boundary w						
and no adverse water impact was observed. (Photo 8)	-					
	5. Thus, it is considered that the exceedances on 9 and 12 May were unlikely					
	related to the construction activities under Contract 2.					
6. According to the Daily Extract of Meteorological Observation Hong Kong Observatory, heavy rainfall was recorded on 10						
(Figure 2) Water flow rate increased under the heavy rain and the						
the river bed was stirred up, resulting in turbid water. Thus, it is						
that the exceedance of turbidity on 10 May 2016 was due to the	he heavy rain					
and unlikely due to the construction activities of Contract 2.	10 116					
7. There were no exceedances triggered in the monitoring result of May 2016 at WM3. Nevertheless, the Contractor should implement						
mitigation measures as recommended in the implementation						
environmental mitigation measures in the EM&A Manual.						

Prepared By:	Winnie Chiu
Designation :	Assistant Environmental Consultant

Signature :	Chin	
Date :	26 May 2016	_

Photo Record

Photo 1 Slightly turbid water was observed at WM3 on 9 May 2016.

Photo 2
Water samples collected at WM3 was slightly turbid on 9 May 2016.

Photo 3
Turbid water was observed at WM3 on 10 May 2016.

Photo 4Turbid water was observed at WM3-C on 10 May 2016.

Photo 5
Turbid water was observed at WM3 on 12 May 2016.

Photo 6
Turbid water was observed at WM3-C on 12 May 2016.

Photo 7

During weekly site inspection on 13 May 2016, it was observed that building foundation works was carried out at Admin Building and the site area was mostly hard paved.

Photo 8

Inspection was carried out on 13 May 2016 at the discharge nullah outside the site boundary and no adverse water impact was observed.

Photo 9

No adverse water impact was observed at the discharge nullah outside the site boundary on 9 May 2016.

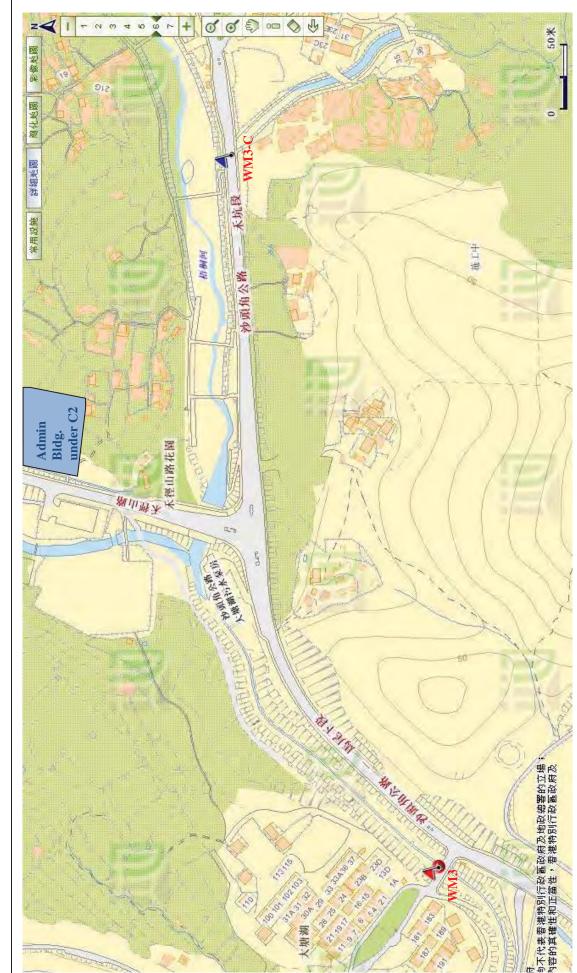
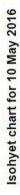



Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

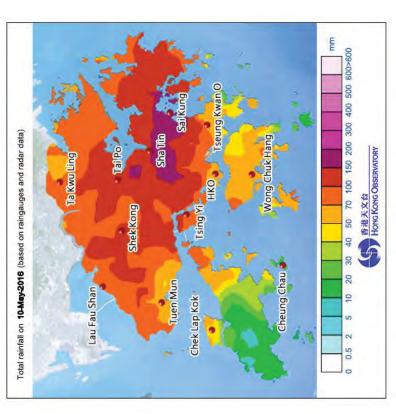


Figure 2: Rainfall distribution on 10 May 2016

To Mr. Edwin Au **Fax No 2403 1162**

Company Sang Hing Civil – Richwell Machinery JV

 \mathbf{cc}

From Winnie Chiu Date 7 June 2016

Our Ref TCS00694/13/300/**F0335** No of Pages 7 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM1 on 17, 19

May 2016 (Contract 5)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the following Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0328 dated 17 May 2016

TCS00694/13/300/F0339 dated 19 May 2016

TCS00694/13/300/F0354 dated 25 May 2016

TCS00694/13/300/F0359 dated 25 May 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully,

For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Kelvin Lee (ER, AECOM) Fax: 2674 7732 Mr. Antony Wong (IEC, SMEC) By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project			CE 45/	/2008	
Date		17 May 2016	19 May 2016	17 May 2016	19 May 2016
Location			WN	11	
Time		10:57	12:07	10:57	12:07
Parameter		Turbidity (NTU)	Turbidity (NTU)	Suspended So	olids (mg/L)
Action Lev	el	51.3 AND 120 control station	of the same day	54.5 AND 120° control station of	of the same day
Limit Leve	1	67.6 AND 130 control station		64.9 AND 130° control station of	
Measured	WM1-C	11.1	25.2	7.5	11.5
Levels	WM1	69.0	70.6	70.5	127
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level
Investigation Results, Recomment & Measures		construction construction of Road. (Figura abovemention at Boundary Construction of Road. (Figura abovemention at Boundary Construction of Road. (Figura abovemention at Boundary Considered to Month and the Road of the Road	the site informativities carried of u-channel and be a 1) No waste ed work and no concontrol Point (BCP) the site records a 17 & 19 May 20 the field photos (Photos the bar screen of May 2016. Waterbid water would be a spection by the Royal to 8) and 24 May impact and surface to wastewater generate the exceedances where the Event and Act of the exceedances where the exceed	out on 17 & 19 bituminous laying a water was general instruction activities which near Kong Y from the monitor of 16, turbid water at WM1-C was visual oto 1 & 4), accumulated at WM from the cumulated at WM from the cumula	May 2016 was at Lin Ma Hang rated from the swere conducted Yiu River. Ing team during was observed at ally clear. (Photo dilation of rubbish WM1 on 17 May 11 was therefore M1. ET on 17 May 12), no adverse ved. Moreover, cried out and no vestigation, it is the Contract. Ing frequency at level exceedance onsecutive days. May 2016 and no vertheless, SRJV cion measures as

Prepared By: Winnie Chiu

Designation : Assistant Environmental Consultant

Signature:

Date : 7 June 2016

Photo Record

Photo 1During water sampling on 17 May 2016, turbid water was observed at WM1.

Photo 2 During water sampling on 17 May 2016, the water quality at WM1-C was clear.

Photo 3
The water samples collected at WM1 on 17 May 2016 were turbid.

Photo 4

During water sampling on 19 May 2016, accumulation of rubbish were observed at the Box Culvert in WM1

AUES

Photo 5During water sampling on 19 May 2016, the water quality at WM1-C was clear.

Photo 6The water samples collected at WM1 on 19 May 2016 were turbid.

Photo 7Bituminous laying works was undertaking. No adverse water quality impact was noted.

Photo 8Bituminous laying works was undertaking. No adverse water quality impact was noted.

Photo 9Bituminous laying works was undertaking. No adverse water quality impact was noted.

Photo 10

Construction of u-channel was observed. No adverse water quality impact was noted.

AUES

Photo 11

Construction of u-channel was observed. No adverse water quality impact was noted.

Photo 12

Construction of pedestrian road was substantial completed. No adverse water quality impact was noted.

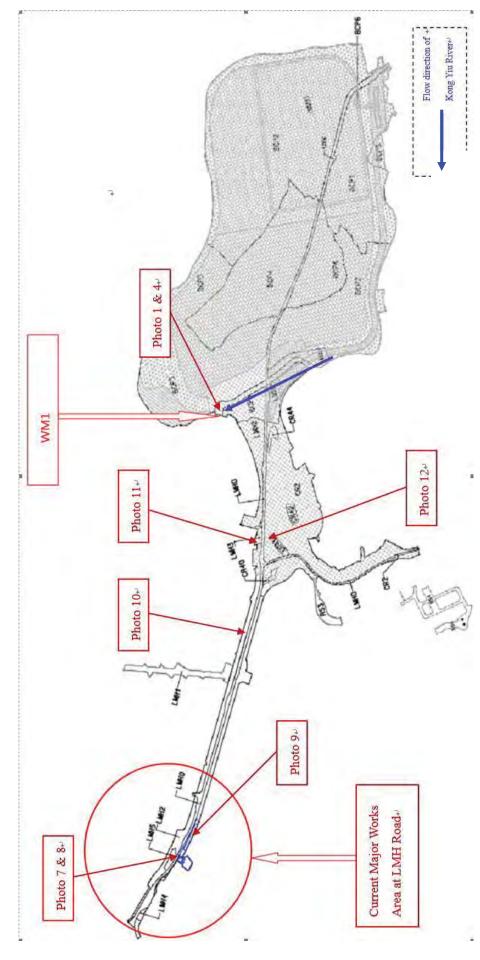


Figure 1: Location Map

Fax Cover Sheet

To Mr. Jon Kitching Fax No 2752 0696

Company Leighton Contractors (Asia) Limited

cc

From Winnie Chiu **Date** 30 May 2016

Our Ref TCS00769/15/300/**F0095** No of Pages (Incl. cover sheet)

RE Architectural Services Department (ArchSD) Contract No: SS C505

Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) - BCP

Buildings and Associated Facilities

Investigation Report for Exceedance of Water Quality Monitoring at Location WM1

on 17 and 19 May 2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:-

TCS00769/15/300/F0094 dated 19 May 2016

TCS00769/15/300/F0102 dated 26 May 2016

TCS00769/15/300/F0096 dated 19 May 2016

TCS00769/15/300/F0103 dated 26 May 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

Mr. David Chan (EPD) Fax: 2685 1155 c.c.

> Mr. William WL Cheng (ASD) By e-mail Mr. Justin Cheung (Ronald Lu) By e-mail Mr. Antony Wong (IEC, SMEC) By e-mail 2674 7732 Mr. Simon Leung (ER, AECOM) Fax:

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project			CE 4:	5/2008			
Contract			SS	C505			
Monitoring	Location		W	M1			
Date		17 May 2016	19 May 2016	17 May 2016	19 May 2016		
Time		10:57	12:07	10:57	12:07		
Parameter			y (NTU)	Suspended S	olids (mg/L)		
A 4. T	,		0% of upstream	54.5 AND 120% o			
Action Leve	el	control station	of the same day	station of th	•		
Timit I aval		67.6 AND 130	0% of upstream	64.9 AND 130% o	f upstream control		
Limit Level		control station	of the same day	station of th	ne same day		
Measured	WM1-C	11.1	25.2	7.5	11.5		
levels	WM1	69.0	70.6	70.5	127.0		
Exceedance	;	Limit	Level	Limit	Level		
Investigatio	n	1. According to	the site information	provided by the Co	ntractor, the major		
Results,		_		it on 17 and 19 M	-		
Recommend	dations &			truction, driven pilit	•		
Mitigation I	Measures						
		retaining wall construction which are illustrated in Figure 1a &1b. It is noted that the majority active construction area were not closed to Kong					
		Yiu River. (Figure 2)					
		` '	<u> </u>				
		_		from the monitor	0		
		_	•	turbid water was c			
				11-C was clear. (Pho			
		May 2016, turbid water was observed at WM1 whereas clear water was observed at WM1-C. (Photo 4, 5)					
		3. According to the field photos (Photo 1 and 4), accumulation of rubbish					
		were observed at the bar screen of box culvert near WM1 on 17 and 19					
			May 2016. Water flow near WM1 was therefore retarded and turbid water cumulated at WM1.				
				iviting on 17 and 1	0 Mary 2016 and		
				ivities on 17 and 1	•		
				•	•		
		confirmed by the Contractor, wastewater was generated during the bored piling work only and the wastewater was recirculated for the					
		1 0		arge is required, the	•		
		temporary site	e drainage plan in w	hich wastewater wo	ould be diverted to		
		the perimeter	channel and then	collected to the was	stewater treatment		
		plant for treatment before discharge. (Figure 3) It is noted that the					
		discharge point connecting public drainage was located at the west of					
		the site and the discharge water would not flow to WM1 and its					
		upstream. (Figure 3)					
		5. In view of the topography of the construction site, the formation level of the site is lower than the roads bounding the site (around 2m height					
					_		
		· · · · · · · · · · · · · · · · · · ·		he wastewater gener			
				undary. (Photo 6)	·		
				d water is reused on			
		for dust supp	pression) whereas t	the rest of the trea	atment wastewater		
		would be disc	harge off site at the	approval discharge p	ooint.		
		6. There were i	no exceedances tris	ggered in the subse	equent monitoring		
			-	According to the al	_		
<u> </u>			., == 1.1mj 2010.				

	it is considered that the exceedances were not likely related to the works under the Contract.
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By:	Winnie Chiu
Designation:	Assistant Environmental Consultant
Signature :	Chin
Date:	30 May 2016

Photo 1

During water sampling on 17 May 2016, turbid water was observed at WM1. Accumulation of rubbish was also observed at the Box Culvert at WM1.

Photo 2

During water sampling on 17 May 2016, the water quality at WM1-C was clear.

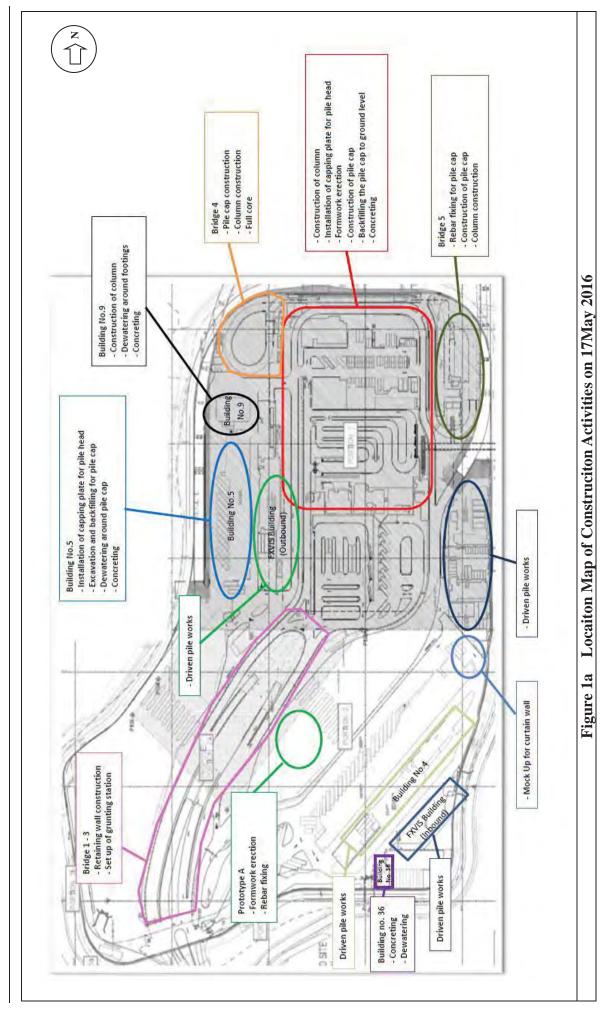
Photo 3

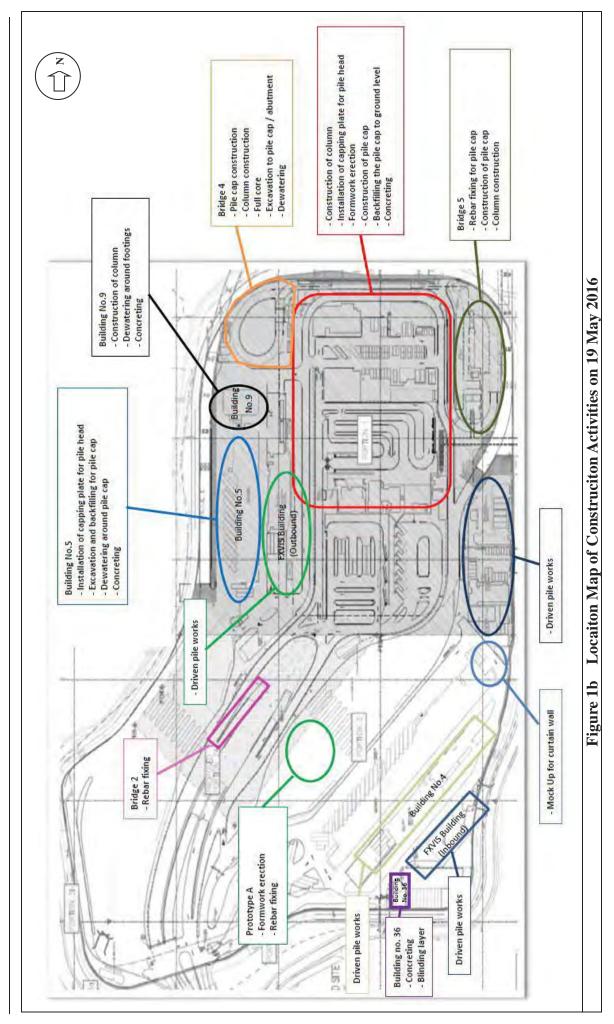
The water samples collected at WM1 on 17 May 2016 were turbid.

Photo 4

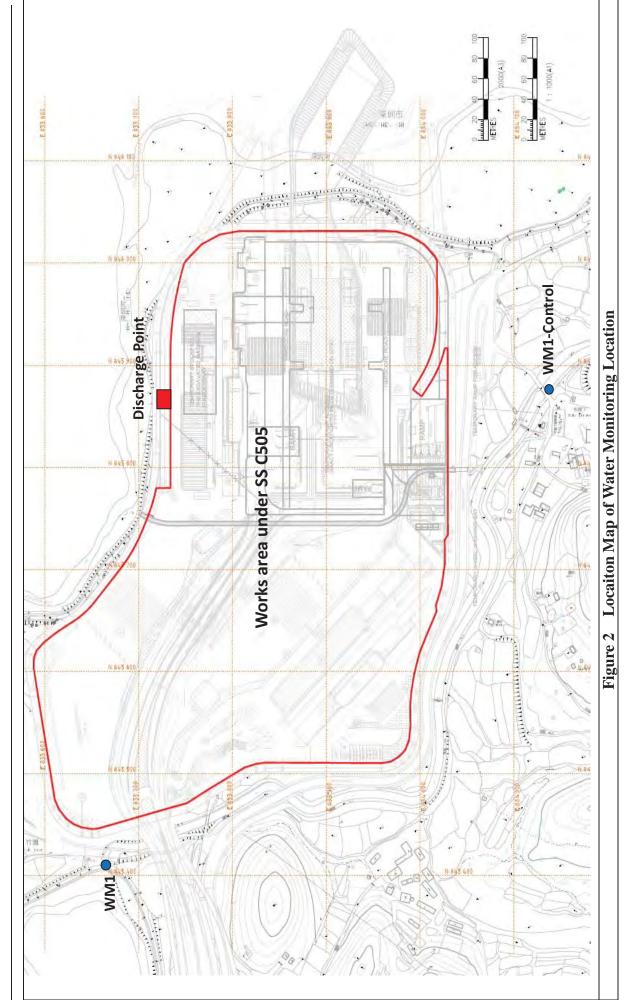
During water sampling on 19 May 2016, accumulation of rubbish was observed at the Box Culvert at WM1.

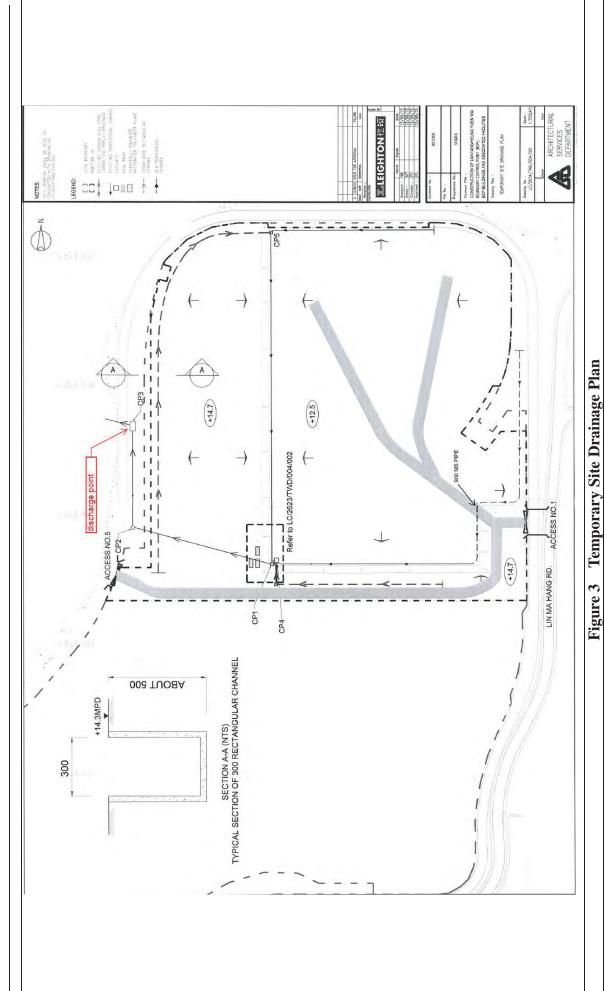
Photo 5


During water sampling on 19 May 2016, the water quality at WM1-C was clear.


Photo 6

Temporary drainage channel has been constructing at the periphery of the site and the formation level of the site is lower than the roads bounding the site.





Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 24 May 2016

Our Ref TCS00694/13/300/**F0336** No of Pages 5 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Locations WM2A on 11 May

2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0319 dated 13 May 2016 TCS00694/13/300/F0342 dated 21 May 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Simon Leung (ER of C6/ AECOM) Fax: 2251 0698 Mr. Antony Wong (IEC, SMEC) By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008		
Date		11 May 2016		
Location		WM	2A	
Time		10:4	45	
Parameter		Suspended Solids (mg/L)	Turbidity (NTU)	
Action Lev	el	14.6 AND 120% of upstream control station of the same day	24.9 AND 120% of upstream control station of the same day	
Limit Leve	l	17.3 AND 130% of upstream control station of the same day	33.8 AND 130% of upstream control station of the same day	
Measured	WM2A-C	6	12.1	
Levels	WM2A	206.5	186	
Exceedance		Limit Level	Limit Level	
	on Results, idations & Measures	206.5 186		

Prepared By: Winnie Chiu

Designation: Assistant Environmental Consultant

Signature :	Chin	
Date :	24 May 2016	

Photo 1During water sampling on 11 May 2016, turbid water was observed at WM2A.

Photo 2The water samples collected at WM2A on 11 May 2016 was turbid.

Photo 3During water sampling on 11 May 2016, the water quality at WM2A-C was visually clear.

Photo 4

The inlet pipe which carried wastewater collected from the sites was incorrectly connected to the tank which received effluent from the AquaSed(SH-15).

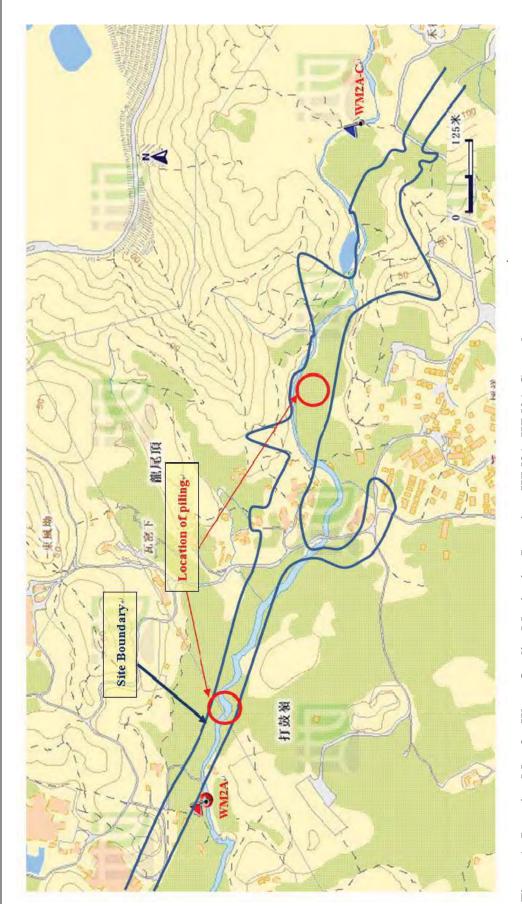


Figure 1 Location Map for Water Quality Monitoring Locations WM2A, WM2A-Control

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 30 May 2016

Our Ref TCS00694/13/300/**F0337** No of Pages 4 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM2B on 7 May

2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:

TCS00694/13/300/F0322 dated 14 May 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008	
Date		7 May 2016	
Location		WM2B	
Time		10:59	
Parameter		Turbidity (NTU)	
Action Lev	el	11.4 AND 120% of upstream control station of the same day	
Limit Leve		12.3 AND 130% of upstream control station of the same day	
Measured	WM2B-C	5.7	
Levels	WM2B	23	
Exceedance		Limit Level	
Investigation Results, Recommendations & Mitigation Measures		1. According to the site information provided from CCKJV, construction activities carried out on 7 May 2016 at North Portal (upstream of WM2B) were bored piling and slope work. The monitoring locations and works area are shown in Figure 1.	
		2. According to the site record from the monitoring team on 7 May 2016, it was observed that the water flowing in the channel and the water samples collected at WM2B was visually clear. Besides, no surface runoff was observed.(Photo 1 & 2)	
		3. As advised by the Contractor, self-monitoring for the treated water in the wastewater treatment facilities was conducted and the effluent was visually clear on 7 May 2016. (Photo 3 & 4)	
		4. During the joint site inspection with ET, RE, IEC and Contractor on 12 May 2016, it was observed that the water in the upper stream of WM2B was visually clear. No adverse water impact was observed. Also, no site surface runoff was observed. (Photo 5 & 6, Figure 1)	
		5. Water monitoring was carried out on 9 and 11 May 2016 and no exceedance was triggered. It is considered that the exceedance on 7 May 2016 is not related to the construction activities of Contract 6. Nevertheless, CCKJV should continue to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.	

Prepared By:	Winnie Chiu	
Designation:	Assistant Environmental Consultant	
Signature :	Chin	
Date:	30 May 2016	

AUES

Photo 1
During water sampling on 7 May 2016, it was observed that the water at WM2B was visually clear. Also, no surface runoff was observed.

Photo 2
The water samples collected at WM2B and WM2B-C on 7 May 2016 were visually clear.

Photo 3
Self-monitoring for the treated water in the wastewater treatment facilities was conducted and the effluent was visually clear on 7 May 2016.

Photo 4Self-monitoring for the treated water in the wastewater treatment facilities was conducted and the effluent was visually clear on 7 May 2016.

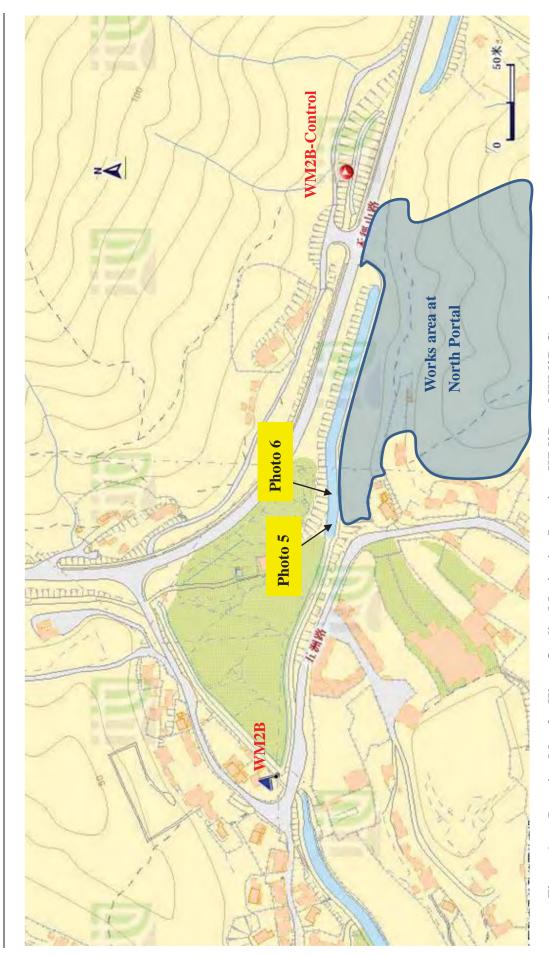


Photo 5During joint site inspection on 12 May 2016, it was observed that the water at upper stream of WM2B was visually clear.

Photo 6During joint site inspection on 12 May 2016, no adverse water impact was observed at upper stream of WM2B.

Location Map for Water Quality Monitoring Locations WM2B and WM2B-Control Figure 1

Z:Jobs/2013/TCS00694/300\NOE\IR\F0337.doc Action-United Environmental Services & Consulting

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 7 June 2016

Our Ref TCS00694/13/300/F0351b No of Pages 6 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM1 on 17 & 19

May 2016 (Contract 6)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the following Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0327 dated 17 May 2016

TCS00694/13/300/F0338 dated 19 May 2016

TCS00694/13/300/F0353 dated 25 May 2016

TCS00694/13/300/F0358 dated 27 May 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008				
Date		17 May 2016				
Location			WM	•	,	
Time		10:57	12:07	10:57	12:07	
Parameter		Turbidity (NTU)	Turbidity (NTU)	Suspended S	Solids (mg/L)	
A -4: T	-1	51.3 AND 120% o	of upstream control		% of upstream	
Action Lev	ei	station of the	he same day	control station	of the same day	
Limit Leve	1		67.6 AND 130% of upstream control 64.9 AND 130% of upstre			
Limit Level			ne same day		control station of the same day	
Measured	WM1-C	11.1	25.2	7.5	11.5	
Levels	WM1	69.0	70.6	70.5	127	
Exceedance	e	Limit Level	Limit Level	Limit Level	Limit Level	
Investigation		1. According to t	he site information p	provided from the	CCKJV, no bored	
Recommen		1 0	as carried out on 17 &	•	•	
Mitigation	Measures		hich upstream of W		_	
			n those sampling da	ys. The monitor	ing locations and	
			shown in Figure 1.			
			the site record f			
		_	17 and 19 May 2016	*		
		whereas the water quality at WM1-C was clear. (Photo 1 to 6)				
		3. According to the field photos (Photo 1 & 4), accumulation of rubbish were observed at the bar screen of the box culvert near WM1 on 17 &				
		-	Water flow near WN			
			ed at WM1. Moreo			
		the Kong Yiu River was observed during the site investigation on 19 May 2016. (Photo 7, 8, 9)				
		,		0 M 2016 :4		
			te investigation on 1			
		•	sedimentation tanks v discharge (Photo 10).	•		
			Contract, self-moni			
		•	by the Contractor if	•		
			ent complied with the			
		_	gation, turbid water	_		
		-	accumulation of rubb			
			t the exceedances we		,	
			he Event and Action	•		
			ease to daily due to	,	1 "	
			edances were trigger			
			s carried out on 18 ar		-	
			on both days. Ne			
		fully implemen	nt the water mitigation	on measures as rec	ommended in the	
		-	n schedule for enviro	onmental mitigation	n measures in the	
		EM&A Manua	1.			

Prepared By:	Winnie Chiu	
Designation :	Assistant Environmental Consultant	
Signature :	Chin	

Date:	7 June 2016	

Photo 1During water sampling on 17 May 2016, turbid water was observed at WM1.

Photo 2 During water sampling on 17 May 2016, the water quality at WM1-C was clear.

Photo 3The water samples collected at WM1 on 17 May 2016 were turbid.

Photo 4

During water sampling on 19 May 2016, accumulation of rubbish were observed at the Box Culvert in WM1.

Photo 5During water sampling on 19 May 2016, the water quality at WM1-C was clear.

Photo 6
The water samples collected at WM1 on 19 May 2016 were turbid.

Photo 7

During our site investigation on 19 May 2016, no surface run-off entering Kong Yiu River from the construction site area was observed.

Photo 8

The water condition along Kong Yiu River was visually clear. No site surface run-off was observed during our site investigation on 19 May 2016.

Photo 9

The water condition along Kong Yiu River was visually clear. No site surface run-off was observed during our site investigation on 19 May 2016.

Photo 10

AquaSed (SH-11) is provided on site for wastewater treatment if required.

Photo 11

The piling works have been finished and the construction of pile cap will generate limited wastewater via the process.

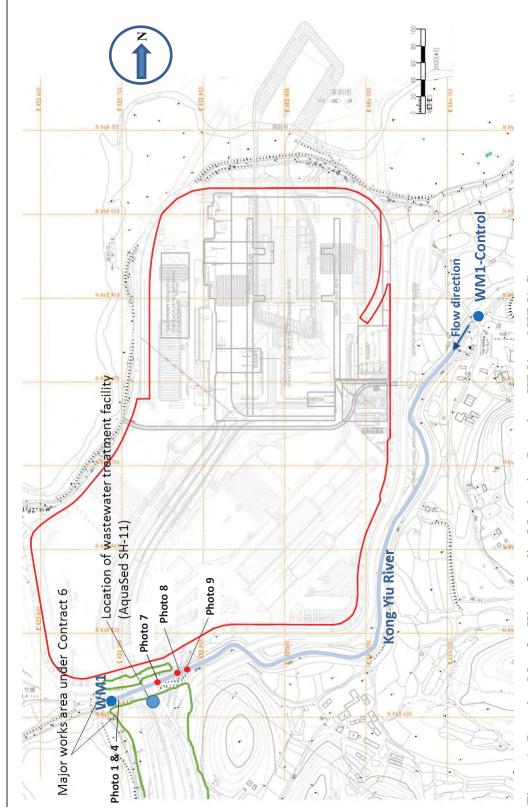


Figure 1 Location Map for Water Quality Monitoring Locations WM1 and WM1-C

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 30 May 2016

Our Ref TCS00694/13/300/**F0361** No of Pages 5 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM3 on 21 May

2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0346 dated 24 May 2016 TCS00694/13/300/F0366 dated 30 May 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 45.	/2008
Date		21 May	
Location		WN	
Time		11:	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)
Action Level	l	13.4 AND 120% of upstream control station of the same day	12.6 AND 120% of upstream control station of the same day
Limit Level		14.0 AND 130% of upstream control station of the same day	12.9 AND 130% of upstream control station of the same day
Measured	WM3-C	28.5	36.0
Level	WM3	57.7	56.0
Exceedance	e	Limit Level	Limit Level
Exceedance Investigation Results, Recommendations & Mitigation Measures		 According to the site information provided from the Contractor of C6 (CCKJV), the main construction activities carried out on 21 May 2016 at upstream of WM3 was bored pile works. The monitoring locations and works area are shown in Figure 1. According to the site record from the monitoring team during monitoring on 21 May 2016, the water quality at WM3 and WM3-C was slightly turbid. (Photo 1, 2, 3) According to the Daily Extract of Meteorological Observations from the Hong Kong Observatory, heavy rainfall was recorded on 21 May 2016. (Figure 2) The flow rate of the river increased, sediment and cumulated silt at the river bed was stirred up during rain, resulting in turbid water in river channel. Besides, under heavy rain, surface runoff from the nearby soil slopes into the river may make the water become more turbid. Thus, it is considered that the exceedance on 21 May 2016 was related to the heavy rainfall. According to Event and Action, the monitoring frequency at WM3 has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 23 May 2016. 	
Action to be taken		The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.	

Prepared By:	Winnie Chiu	
Designation :	Assistant Environmental Consultant	
Signature :	Chin	
Date :	30 May 2016	

Photo 1Slightly turbid water was observed at WM3 on 21 May 2016.

Photo 2 Water samples collected at WM3 and WM3-C was slightly turbid.

Photo 3Slightly turbid water was observed at WM3-C on 21 May 2016.

Photo 4
Surface runoff from the nearby slopes into the river channel may make the water become more turbid under heavy rain.

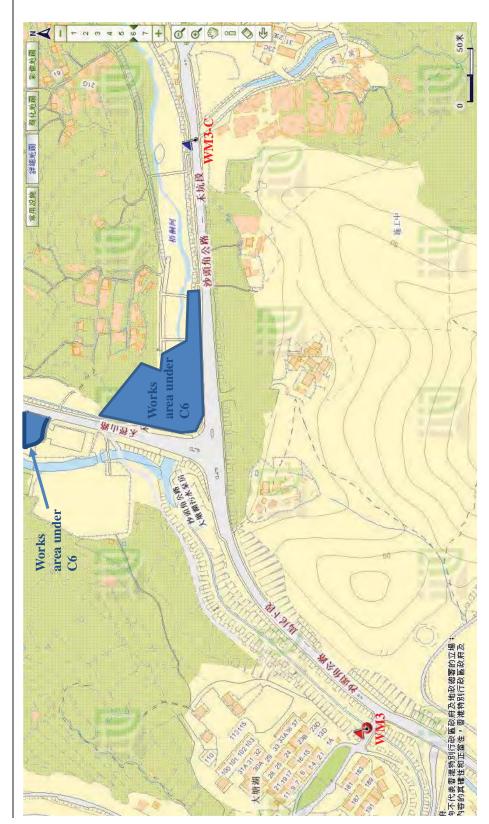


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Isohyet chart for 21 May 2016

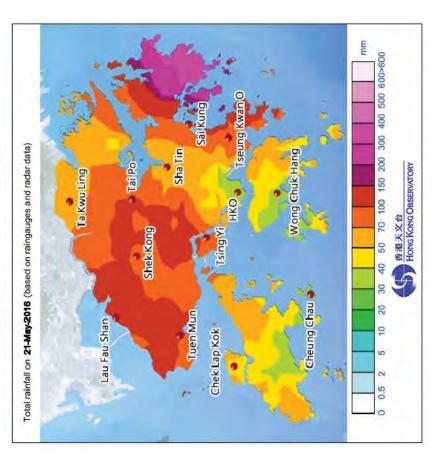


Figure 2 Rainfall distribution on 21 May 2016

To Mr. Roger Lee Fax No 2717 3299

Company Dragages Hong Kong Limited

 \mathbf{cc}

From Winnie Chiu Date 30 May 2016

Our Ref TCS00697/13/300/**F0362** No of Pages 5 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM3 on 21 May

2016 (Contract 2)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0347 dated 11 May 2016 TCS00694/13/300/F0367 dated 30 May 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Gregory Lo (ER, AECOM) Fax: 2171 3498 Mr. Antony Wong (IEC, SMEC) By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008	
Date		21 May 2	
Location		WM:	
Time		11:34	4
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)
Action Level	ı	13.4 AND 120% of upstream control	12.6 AND 120% of upstream
Action Devel	•	station of the same day	control station of the same day
Limit Level		14.0 AND 130% of upstream control	12.9 AND 130% of upstream
		station of the same day	control station of the same day
Measured	WM3-C	28.5	36.0
Level	WM3	57.7	56.0
Exceedance		Limit Level	Limit Level
Investigation Results, Recommendations & Mitigation Measures		building was building foundation wo no discharge was made. The won monitoring location WM3C and WM. 2. According to the site records from th on 21 May 2016, the water qualities turbid. (Photo 1, 2 &3) 3. According to the site photos from n was observed that there was no admullah outside the site boundary. (Photo 4. According to the Daily Extract of Management of the Management of the Daily Extract of Management of the Daily Extrac	arried out on 21 May 2016 at adminarks (rebar fixing and concreting) and rks area under C2 and the water 3 are shown in Figure 1. The monitoring team during monitoring at WM3 and WM3-C were slightly monitoring team on 21 May 2016, it werse water impact at the discharge oto 5) The deteorological Observations from the afall was recorded on 21 May 2016, ander the heavy rain and the sediment esulting in turbid water. Thus, it is May 2016 was due to the heavy rain activities of Contract 2. The monitoring result on 23 May attractor is reminded to implement the commended in the implementation

Prepared By :	Winnie Chiu	
Designation :	Assistant Environmental Consultant	
Signature :	Chin	
Date :	30 May 2016	

Photo 1 Slightly turbid water was observed at WM3 on 21 May 2016.

Photo 2
Water samples collected at WM3 was slightly turbid on 21 May 2016.

Photo 3
Slightly turbid water was observed at WM3 on 21
May 2016.

Photo 4
Building foundation works was carried out at
Admin Building and the site area was mostly hard
paved.

Photo 5
No adverse water impact was observed at the discharge nullah outside the site boundary on 21 May 2016.

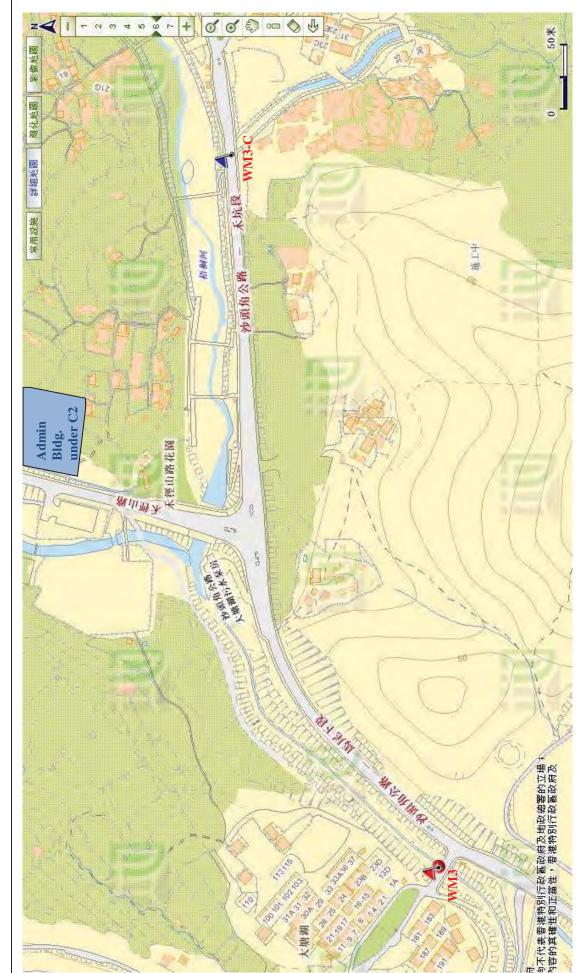


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

Isohyet chart for 21 May 2016

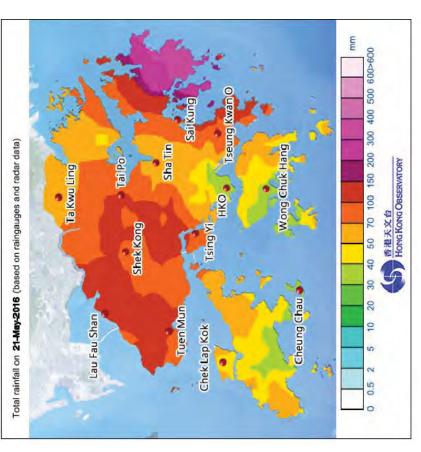


Figure 2: Rainfall distribution on 21 May 2016

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 30 May 2016

Our Ref TCS00694/13/300/**F0365** No of Pages 6 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Locations WM2A on 21 May

2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0344 dated 24 May 2016 TCS00694/13/300/F0368 dated 30 May 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008		
Date			1 May 2016	
Location			WM2A	
Time			10:11	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Level		24.9 AND 120% of upstreacontrol station of the same		
Limit Level		33.8 AND 130% of upstreacontrol station of the same		
Measured	WM2A-C	10.6	8.5	
Levels	WM2A	59.2	81.5	
Exceedance		Limit Level	Limit Level	
Investigation Recommenda Mitigation M	ations &	control station of the same day 10.6 8.5 59.2 81.5		

Prepared By: Winnie Chiu

Designation: Assistant Environmental Consultant

Signature: 30 May 2016

AUES

Photo Record

Photo 1

During water sampling on 21 May 2016, turbid water was observed at WM2A.

Photo 2

The water samples collected at WM2A on 21 May 2016 were slightly turbid

Photo 3

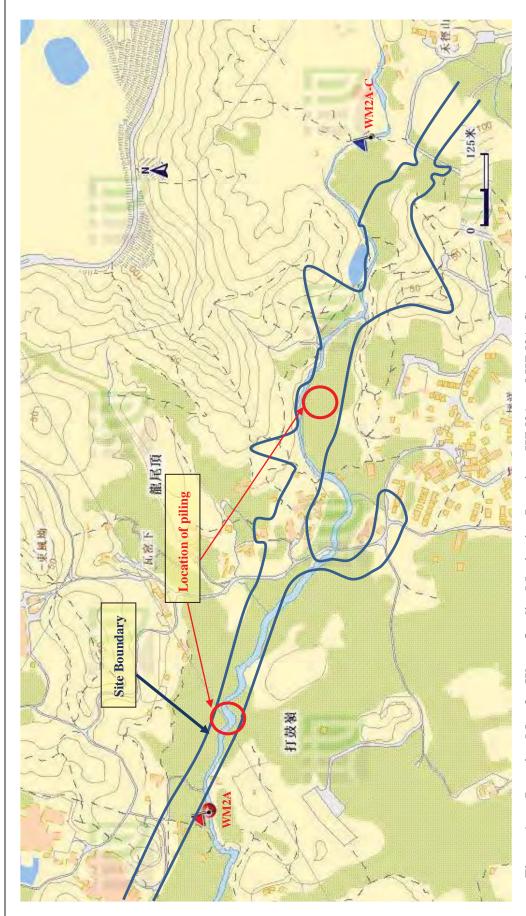

During weekly site inspection on 26 May 2016, it was observed that concrete block and sand bag as temporary bund was set up near the piling works which besides Ping Yuen River of Bridge D to control runoff.

Photo 4

Wastewater treatment facilities including one AquaSed and three series of sedimentation tank have been installed for piling work.

Location Map for Water Quality Monitoring Locations WM2A and WM2A-Control Figure 1

Isohyet chart for 21 May 2016

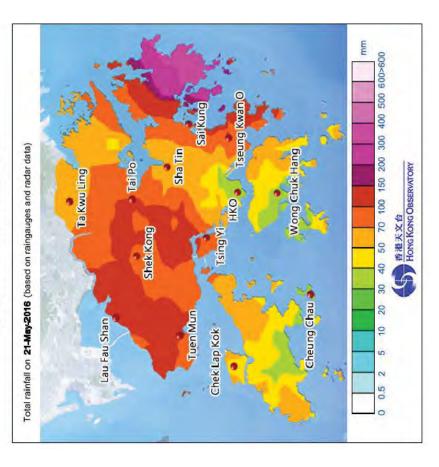


Figure 2: Rainfall distribution on 21 May 2016

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 31 May 2016

Our Ref TCS00694/13/300/**F0371** No of Pages 5 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM2B on 21 May

2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:

TCS00694/13/300/F0345 dated 24 May 2016 TCS00694/13/300/F0370 dated 30 May 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

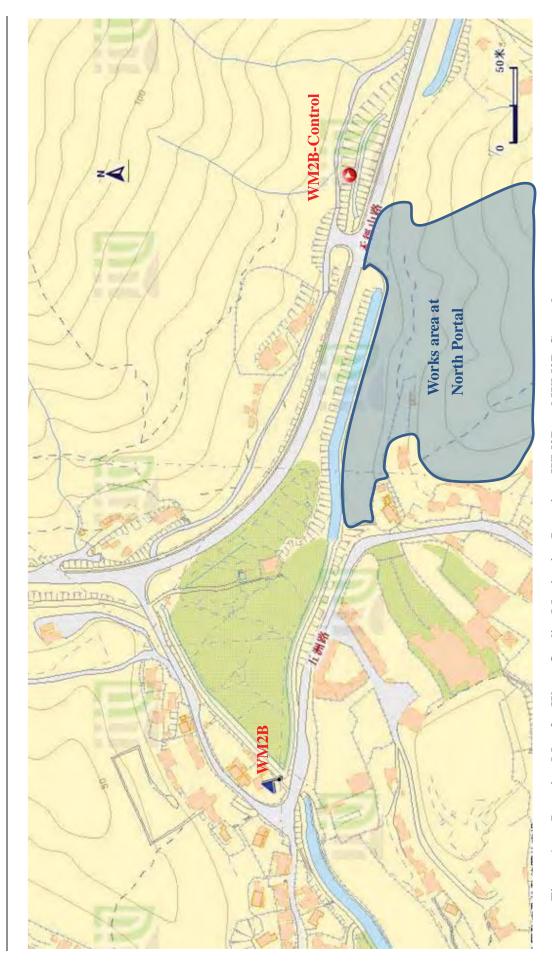
Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Dwainat		CE 45	(2000		
Project		CE 45/2008			
Date Location		21 May 2016 WM2B			
Time		10:37			
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)		
Action Level		11.4 AND 120% of upstream control station of the same day	11.8 AND 120% of upstream		
			control station of the same day		
		12.3 AND 130% of upstream	•		
Limit Level			12.4 AND 130% of upstream		
		control station of the same day	control station of the same day		
Measured	WM2B-C	6	7.0		
Levels	WM2B	99.9	152.0		
Exceedance		Limit Level	Limit Level		
Investigation Results, Recommendations & Mitigation Measures		 According to the site information provided from CCKJV, construction activities carried out on 21 May 2016 at North Portal (upstream of WM2B) were bored piling and slope work. The monitoring locations and works area are shown in Figure 1. According to the site record from the monitoring team on 21 May 2016, it was observed that the water flowing in the channel and the water samples collected at WM2B was slightly turbid. (Photo 1 and 			
		3. As advised by the Contractor, the wastewater generated from the bored pile works was recirculated to the AquaSed for treatment and discharge would be made when the effluent is overflow from the AquaSed. Since discharge license was not yet granted for the Contract, self-monitoring for the effluent quality would be conducted by the Contractor if discharge is required to ensure the discharge effluent complied with the relevant requirements. According to the self-monitoring record by the Contractor on 21 May 2016 the treated water in the AquaSed was visually clear. (Photo 3)			
		4. According to the Daily Extract of Meteorological Observations from the Hong Kong Observatory, heavy rainfall was recorded on 21 May 2016. (Figure 2) The flow rate of the river increased, sediment and cumulated silt at the river bed was stirred up during rain, resulting in turbid water in river channel.			
		5. Apart from the disturbance of cumulated silt at the river bed during rain, it was observed that trails of muddy runoff from the public road surface into the existing channel under the rain. (Photo 1) Thus, it is considered that the exceedance on 21 May 2016 is due to the heavy rainfall.			
		6. Water monitoring was carried out on 23 May 2016 and no exceedance was triggered. Nevertheless, CCKJV should continue to fully implement the water mitigation measures as recommended			

	in the implementation so measures in the EM&A Man		environmental	mitigation
Prepared By:	Winnie Chiu	_		
Designation:	Assistant Environmental Consultant	_		
Signature :	Chin			
Date:	31 May 2016	_		

Photo 1

During water sampling on 21 May 2016, it was observed that the water at WM2B was slightly turbid. Trails of muddy road surface runoff was observed.


Photo 2

The water samples collected at WM2B on 21 May 2016 were slightly turbid.

Photo 3 On 21 May 2016, the effluent of the AquaSed was visually clear.

Location Map for Water Quality Monitoring Locations WM2B and WM2B-Control Figure 1

Z:JJobs/2013/TCS00694/300\NOE\IR\F0371.doc Action-United Environmental Services & Consulting

Isohyet chart for 21 May 2016

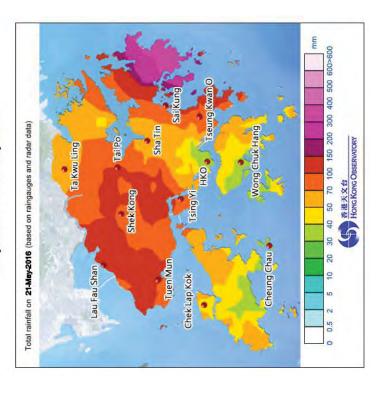


Figure 2 Rainfall distribution on 21 May 2016

Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 6 June 2016

Our Ref TCS00694/13/300/**F0382** No of Pages 5 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Locations WM2A on 27, 28,

30, 31 May 2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0364 dated 27 May 2016

TCS00694/13/300/F0374 dated 31 May 2016

TCS00694/13/300/F0375 dated 31 May 2016

TCS00694/13/300/F0376 dated 31 May 2016

TCS00694/13/300/F0386 dated 6 June 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully,

For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Chris

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD)

Fax: 2685 1155 Fax: 2251 0698

Mr. Simon Leung (ER of C6/ AECOM) Mr. Antony Wong (IEC, SMEC)

By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008							
Date		27 May	28 May	30 May	31 May	27 May	28 May	30 May	31 May
Location					WM				
Time		10:41	11:17	12:04	11:06	10:41	11:17	12:04	11:06
Parameter			Turbidity (NTU) Suspended Solids (mg			g/L)			
Action Lev	el	24.9 AND 120% of upstream control station of the same day			14.6 AND 120% of upstream control station of the same day				
Limit Leve	1			0% of ups			17.3 AND 130% of upstream control station of the same day		
Measured	WM2A-C	6.68	11.8	3.66	3.53	4.5	<2	<2	<2
Levels	WM2A	273	70.7	53.25	68.05	189.5	94.0	76.0	84.5
Exceedance			Limit	t Level			Limit	Level	
Recommen	Levels WM2A 273 70.7 53.25 68.05 189.5 94.0 76.0		1 May 2 liling wor in Figure ing team was observed was observed. And Consource of tream of arbid. (Plance of turbiding frequence trigg cest trigg Neverthantinue trecomments.)	2016 at ks. The et l. during erved at C were ntractor f turbid WM2A hoto 11 edances d water tency at it level ered in ered at eless, it o fully nded in					

Prepared By:	Winnie Chiu
Designation:	Assistant Environmental Consultant
Signature :	Chin

Date:	6 June 2016	

Photo 1During water sampling on 27 May 2016, turbid water was observed at WM2A.

Photo 2The water samples collected at WM2A on 27 May 2016 was turbid.

Photo 3

During water sampling on 27 May 2016, the water quality at WM2A-C was visually clear.

Photo 4
During water sampling on 28 May 2016, turbid water was observed at WM2A.

Photo 5

During water sampling on 28 May 2016, the water quality at WM2A-C was visually clear.

Photo 6During water sampling on 30 May 2016, turbid water was observed at WM2A.

Photo 7During water sampling on 30 May 2016, the water quality at WM2A-C was visually clear.

The water samples collected on 30 May 2016 at WM2A is more turbid than those collected at WM2A-C.

Photo 9During water sampling on 31 May 2016, turbid water was observed at WM2A.

During water sampling on 31 May 2016, the water quality at WM2A-C was visually clear.

On 2 June 2016, it was observed that unknown source of turbid water was seeping out from the river bed at upstream of WM2A continuously

Photo 12
On 2 June 2016, it was observed that unknown source of turbid water was seeping out from the river bed at upstream of WM2A continuously

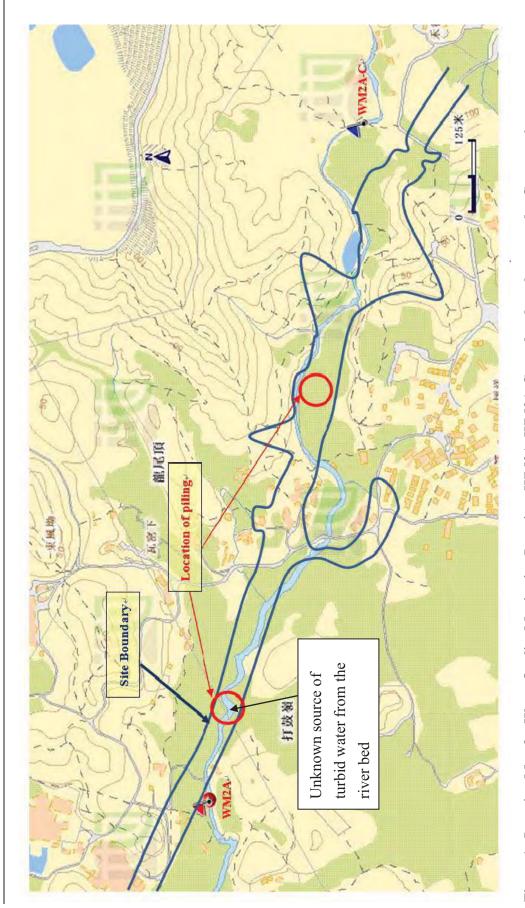


Figure 1 Location Map for Water Quality Monitoring Locations WM2A, WM2A-Control and work area under Contract 6

Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 30 May 2016

Our Ref TCS00694/13/300/**F0275a** No of Pages 7 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM2B on 11 and

14 April 2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:

TCS00694/13/300/F0251 dated 15 April 2016 TCS00694/13/300/F0266 dated 20 April 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Simon Leung (ER of C6/ AECOM) Fax: 2251 0698
Mr. Antony Wong (IEC, SMEC) By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project			CE 45/2009	
Date		14 Apr 2016	CE 45/2008 11 Apr 2016	14 Apr 2016
Location		14 Арт 2010	WM2B	1+ Apr 2010
Time		10:18	10:57	10:18
Parameter		Turbidity (NTU)		Solids (mg/L)
Action Lev	el	11.4 AND 120% of upstream control station of the same day	11.8 AND 120% c	of upstream control he same day
Limit Leve	l	12.3 AND 130% of upstream control station of the same day		of upstream control ne same day
Measured	WM2B-C	7.4	<2	3.5
Levels	WM2B	73.1	17.0	120.0
Exceedance	2	Limit Level	Limit Level	Limit Level
Investigation Results, Recommendations & Mitigation Measures		According to the site informa activities carried out on 11 a of WM2B) were bored piling and works area are shown in a site.	nd 14 April 2016 at Ng and slope work. The	Iorth Portal (upstream
		2. According to the site record from the monitoring team on 11 April 2016, it was observed that the water flowing in the channel and the water samples collected at WM2B was visually clear. (Photo 1 & 2) Since the water sampling was carried out at the bridge over the drainage channel at shallow water with water depth at around 0.02m, the water sample could not avoid inclusion of the loose sediment and debris. It is considered that the exceedance was unlikely related to the construction activities of the Contract.		
		3. According to the site record from the monitoring team on 14 April 2016, very shallow water was measured at WM2B and the water depth was around 0.02m. (Photo 3 & 4) Also, water sampling was conducted under raining. (Figure 2) Water flowing in the open channel was slightly turbid due to stir up of sediment and cumulated silt at the river bed. (Photo 3 & 4)		
		4. Besides, it was observed that surface into the existing chan It is considered that the exceed at the river bed and muddy ru	nnel on 14 April 2016. edances were likely rel	(Photo 5 & Figure 1) lated to cumulated silt
		5. As advised by the Contractor wastewater treatment facilit visually clear.(Photo 6 & 7)	ies was conducted a	and the effluent was
		6. According to the Event and A has been increase to daily due no exceedances were trig monitoring was carried out o was triggered. CCKJV sho mitigation measures as recomenvironmental mitigation measures.	e to the limit level exception to the limit level exception 15 and 16 April 2010 ould continue fully immended in the implen	eedance recorded until ve days. Additional 16 and no exceedance implement the water mentation schedule for

Prepared By:	Winnie Chiu		
Designation :	Assistant Environmental Consultant		
Signature :	Chin		
Date :	30 May 2016		

Photo 1During water sampling on 11 April 2016, it was observed that the water at WM2B was clear.

Photo 2
The water samples collected at WM2B and WM2B-C on 11 April 2016 were visually clear.

Photo 3

During water sampling on 14 April 2016, it was observed that the water at WM2B was clear.

Photo 4The water samples collected at WM2B on 14 April 2016 were slightly turbid.

Photo 5During water sampling on 14 April 2016, turbid water was observed at WM2B.

Photo 6
The effluent of the AquaSed was visually clear.

Photo 7The effluent of the AquaSed was visually clear.

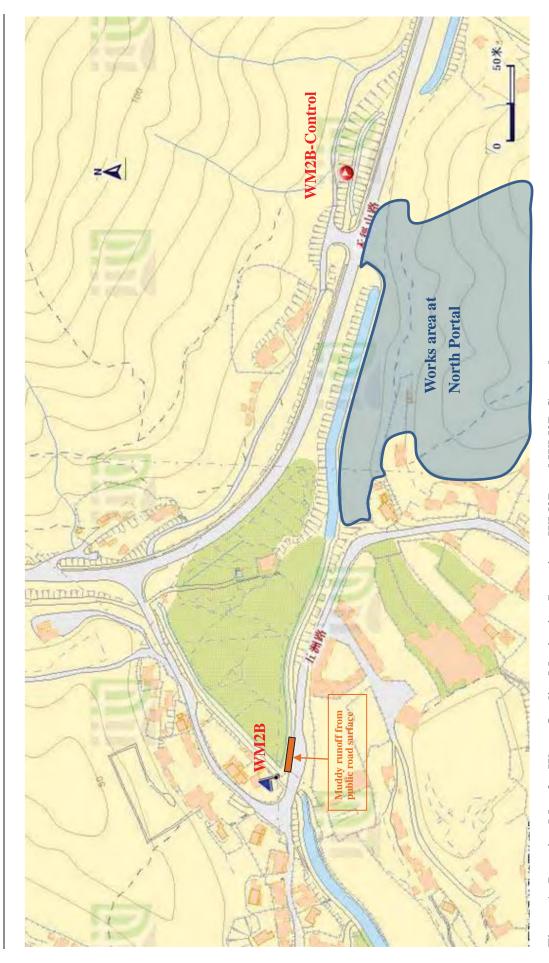


Figure 1 Location Map for Water Quality Monitoring Locations WM2B and WM2B-Control

Isohyet chart for 14 Apr 2016

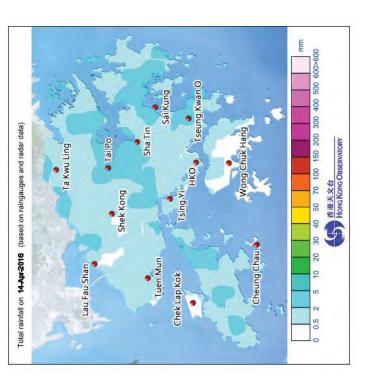


Figure 2 Rainfall distribution on 14 April 2016

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 30 May 2016

Our Ref TCS00694/13/300/F0284a No of Pages 4 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM2B on 20 April

2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:

TCS00694/13/300/F0268 dated 21 April 2016 TCS00694/13/300/F0285 dated 26 April 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Simon Leung (ER of C6/ AECOM) Fax: 2251 0698 Mr. Antony Wong (IEC, SMEC) By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE	45/2008		
Date		20 A	pril 2016		
Location		WM2B			
Time			10:06		
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)		
Action Lev	el	11.4 AND 120% of upstream control station of the same day	11.8 AND 120% of upstream control station of the same day		
Limit Leve	l	12.3 AND 130% of upstream control station of the same day	12.4 AND 130% of upstream control station of the same day		
Measured	WM2B-C	2.1	<2		
Levels	WM2B	12.5	13.0		
Exceedance	e	Limit Level	Limit Level		
Exceedance Investigation Results, Recommendations & Mitigation Measures		construction activities carried (upstream of WM2B) were bore locations and works area are sho 2. According to the site record from very shallow water was measure around 0.01-0.02m. It was obserf and the water samples collected 2) Since the water sampling was drainage channel at shallow was inclusion of the loose sediment at shallow was tewater treatment facilities wisually clear. (Photo 3&4) 4. Thus, it is considered that the construction activities of the Construction activities active	m the monitoring team on 20 April 2016, red at WM2B and the water depth was ved that the water flowing in the channel at WM2B was visually clear. (Photo 1 & was carried out at the bridge over the ater, the water sample could not avoid and debris. If-monitoring for the treated water in the was conducted and the effluent was exceedance was unlikely related to the ater. ion, the monitoring frequency at WM2B the limit level exceedance recorded until red in consecutive days. Additional 21 April 2016 and no exceedance was the fully implement the water mitigation in the implementation schedule for		

Prepared By:	winnie Chiu
Designation:	Assistant Environmental Consultant
Signature :	Chin
Date:	30 May 2016

Photo 1During water sampling on 20 April 2016, it was observed that the water at WM2B was visually clear.

Photo 2
The water samples collected at WM2B and WM2B-C on 20 April 2016 were clear.

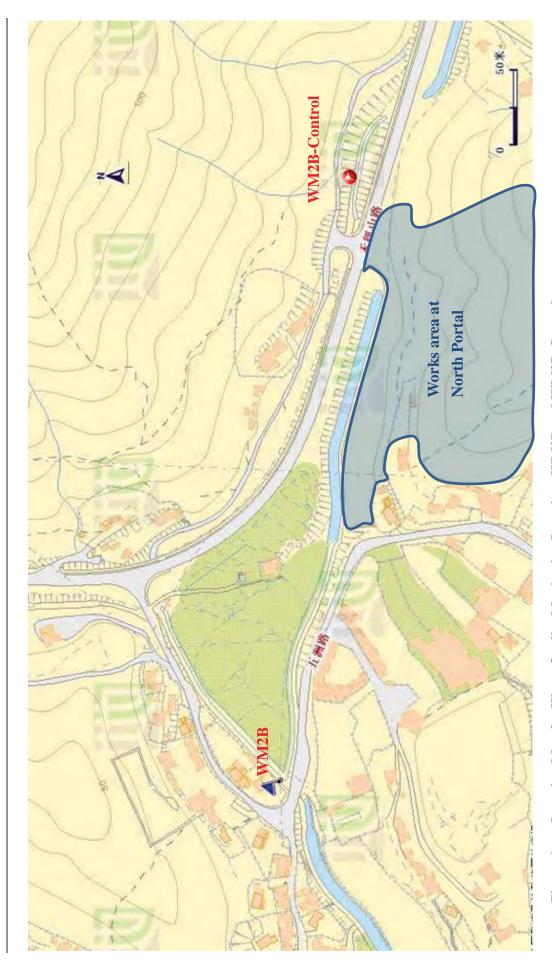


Photo 3
The effluent of the AquaSed on 20 April 2016 was visually clear.

Photo 4
The effluent of the AquaSed on 20 April 2016 was visually clear.

Location Map for Water Quality Monitoring Locations WM2B and WM2B-Control Figure 1

Z:Jobs/2013/TCS00694/300\NOE\IR\F0284a.doc Action-United Environmental Services & Consulting

Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 24 May 2016

Our Ref TCS00694/13/300/F0296b No of Pages 7 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM3 on 20, 21, 22

April 2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0272 dated 22 April 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Simon Leung (ER of C6/ AECOM) Fax: 2251 0698 Mr. Antony Wong (IEC, SMEC) By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

D • 4		T	CE 45/2000		
Project Date		20 Apr 2016	CE 45/2008 21 Apr 2016	22 Apr 2016	
Location		20 Apr 2010	WM3	22 Apr 2010	
Time		13:20	11:15	12:14	
Parameter			Turbidity (NTU)		
Action Level	l	13.4 AND 120%	of upstream control station	of the same day	
Limit Level		14.0 AND 130%	of upstream control station	of the same day	
Measured	WM3-C	5.8	9.8	50.4	
Level	WM3	20.1	28.0	86.8	
Exceedance	2	Limit Level	Limit Level	Limit Level	
Investigation Results, Recomment & Measures		20.1 28.0 86.8 Limit Level Limit Level Limit Level 1. According to the site information provided from the Contractor (CCKJV), the main construction activities carried out on 20, 21, 22 2016 at upstream of WM3 was bored pile works. The monitoring low and works area are shown in Figure 1. 2. According to the site record from the monitoring team during monitor 20, 21 April 2016, the water quality at WM3 was slightly turbid. (Phot 4) On 22 April 2016, turbid water was observed at WM3. (Photo 5 &6 3. Upon exceedance recorded on 20 April 2016 and during site inspect RE, ET, IEC and Contractor on 21 April 2016, the effluent of the Act (SH-8) was found to be turbid. (Photo 7) As reported by CCKJV, the forgot to fill in the flocculent of the AquaSed(SH-8), resulting in effluent. CCKJV had immediately replenished the flocculent and the eleobserved was clear. (Photo 8) In our investigation, it is considered the exceedances on 20, 21 April 2016 were related to the Contract. In olenhance onsite management, CCKJV is advised to implement monitoring record on all AquaSeds under Contract 6. CCKJV has ag follow the advice and the preparation is in progress. 4. According to the Daily Extract of Meteorological Observations for Hong Kong Observatory, heavy rainfall was recorded on 22 April (Figure 2) The flow rate of the river increased, sediment and cumula at the river bed was stirred up during rain, resulting in slightly turbid in river channel. It is considered that the exceedance on 22 April 20 unlikely due to the construction activities of the Contract. 5. According to Event and Action, the monitoring frequency at WM3 had increased to daily due to the limit level exceedance recorded un exceedances were triggered in consecutive days. There were no exceed triggered in the additional monitoring result on 23 April 2016 Contractor is reminded to fully implement the water mitigation measurecommended in the implement daily monitoring record of AguaS		d out on 20, 21, 22 April The monitoring locations team during monitoring on slightly turbid. (Photo 1 to WM3. (Photo 5 &6) If during site inspection by the effluent of the AquaSed ted by CCKJV, the worker SH-8), resulting in turbid flocculent and the effluent on, it is considered that the contract. In order to itsed to implement daily that 6. CCKJV has agreed to so all Observations from the corded on 22 April 2016. Ediment and cumulated silting in slightly turbid water not	
Action to h	o tokon	measures in the EM&A The Contractor should in	A Manual. mplement daily monitoring		
Action to be taken					

Prepared By :	Winnie Chiu		
Designation:	Assistant Environmental Consultant		

Signature :	Chin	
Date :	24 May 2016	

Photo 1 Clear water was observed at WM3 on 20 April 2016.

Photo 2 Water sample collected at WM3 on 20 April 2016 was clear.

Photo 3Slightly turbid water was observed at WM3 on 21 April 2016.

Photo 4Water samples collected at WM3 on 21 April 2016 was slightly turbid.

Photo 5Turbid water was observed at WM3 on 22 April 2016.

Photo 6Water samples collected at WM3 on 22 April 2016 was turbid.

Photo 7During site inspection on 21 April 2016, the effluent of the AquaSed (SH-8) was found to be turbid.

Photo 8After the replenishment of the flocculent, the effluent observed was clear.

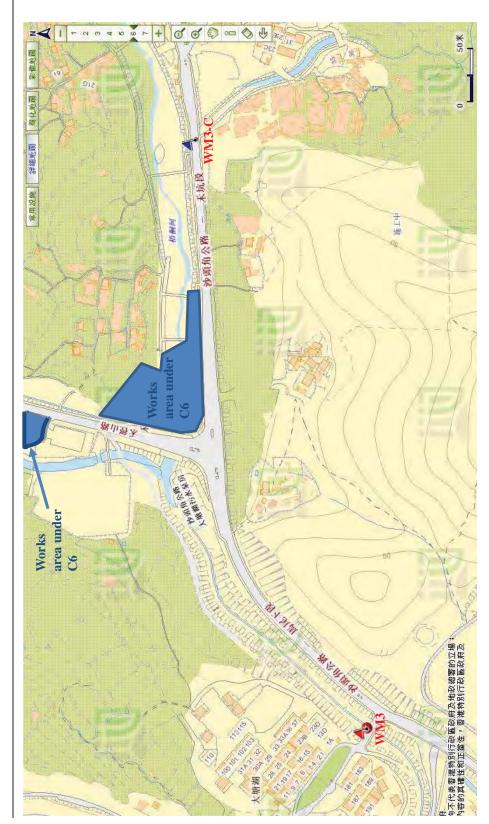


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

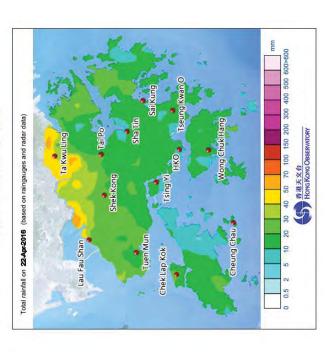


Figure 2 Rainfall distribution on 22 April 2016

To Mr. Roger Lee Fax No 2717 3299

Company Dragages Hong Kong Limited

 \mathbf{cc}

From Winnie Chiu Date 19 May 2016

Our Ref TCS00697/13/300/F0297a No of Pages 6 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM3 on 20, 21 and

22 April 2016 (Contract 2)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0273 dated 22 April 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Gregory Lo (ER, AECOM) Fax: 2171 3498 Mr. Antony Wong (IEC, SMEC) By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008			
Date		20 Apr 2016	21 Apr 2016	22 Apr 2016	
Location			WM3		
Time		13:20	11:15	12:14	
Parameter		Turbidity (NTU)			
Action Leve	I	13.4 AND 120%	of upstream control station	of the same day	
Limit Level		14.0 AND 130%	of upstream control station	of the same day	
Measured	WM3-C	5.8	9.8	50.4	
Level	WM3	20.1	28.0	86.8	
Exceedance		Limit Level	Limit Level	Limit Level	
Investigation Results, Recomment & No Measures	Limit Level Limit Level Limit Level 1. According to the site information provided from the Contractor of C (DHK), construction activities carried out from 20 to 22 April 2016 at admi		to 22 April 2016 at admining and concreting) and no and the water monitoring team during monitoring on was visually clear. (Photo 1 was slightly turbid. (Photo 1 was slightly turbid. (Photo 1 was slightly turbid. (Photo 1 was slightly turbid.) (Photo 2 April 2016, no adverse 1 outside the site boundary. dances on 20 and 21 April 2022. Call Observations from the corded on 22 April 2016. Our increased, sediment and resulting in slightly turbid sidered that the exceedance and frequency at WM3 has beedance recorded until no Additional monitoring was not access were triggered. It is 3 was unlikely due to the		
Action to b	The Contractor is reminded to fully implement the water mitigation measures recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.			_	

Prepared By:	Winnie Chiu
Designation:	Assistant Environmental Consultant
Signature :	Chin
Date:	19 May 2016

19 May 2016

Photo 1 Clear water was observed at WM3 on 20 April 2016.

Photo 2 Clear water was observed at WM3 on 21 April 2016.

Photo 3
Slightly muddy water was observed at WM3 on 22 April 2016.

Photo 4Building foundation works was carried out at Admin Building and the site area was mostly hard paved.

Photo 6No adverse water impact was observed at the discharge nullah outside the site boundary on 20 April 2016.

Photo 5
No adverse water impact was observed at the discharge nullah outside the site boundary on 21 April 2016.

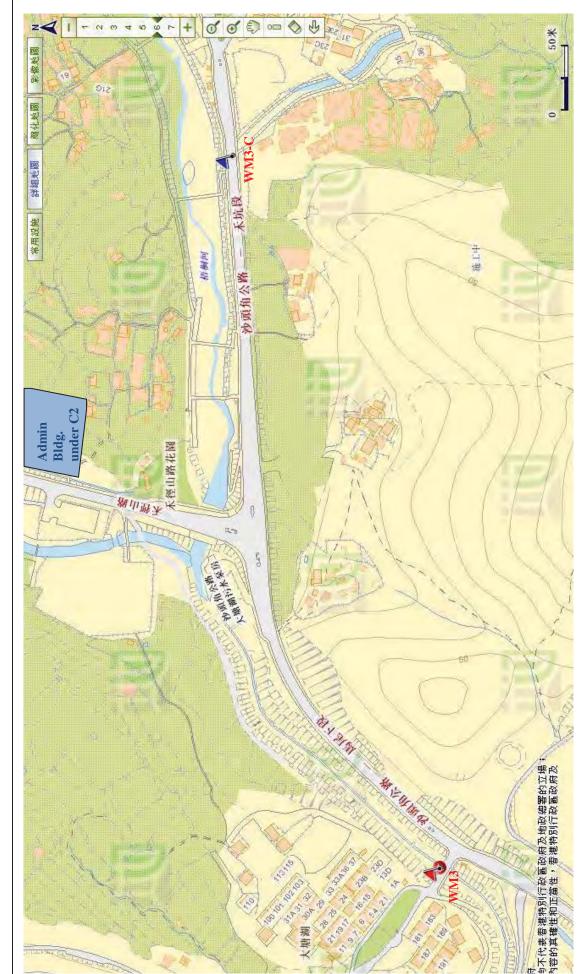
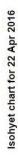



Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

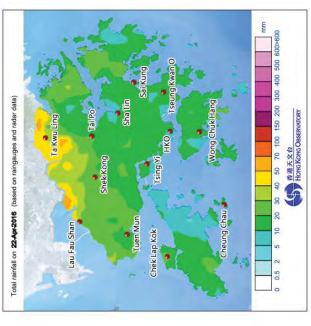


Figure 2 Rainfall distribution on 22 April 2016

Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Winnie Chiu Date 27 May 2016

Our Ref TCS00694/13/300/F0306c No of Pages 8 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM2B on 22, 23,

25, 26 April 2016

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:

TCS00694/13/300/F0281 dated 25 April 2016

TCS00694/13/300/F0280 dated 25 April 2016

TCS00694/13/300/F0286 dated 26April 2016

TCS00694/13/300/F0294 dated 28 April 2016

TCS00694/13/300/F0303 dated 3 May 2016

TCS00694/13/300/F0271 dated 22 April 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully,

For and on Behalf of

Action-United Environmental Services & Consulting

Winnie Chiu

Assistant Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD)

Fax: 2685 1155

Mr. Simon Leung (ER of C6/ AECOM)

Fax: 2251 0698

Mr. Antony Wong (IEC, SMEC)

By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2009									
Troject		CE 45/2008 22 23 25 26 22 23 25 26									
Date		April	April	April	April	April	April	April	April		
		2016	2016	2016	2016	2016	2016	2016	2016		
Location		WM2B									
Time		11:29	10:12	10:00	10:05	11:29	10:12	10:00	10:05		
Parameter		Turbidity (NTU) Suspended Solids (mg									
Action Level				f upstrean e same da		11.8 AND 120% of upstream control station of the same day					
Limit Level				f upstrean e same da		12.4 AND 130% of upstream control station of the same day					
Measured Levels	WM2B-C	7.9	3.2	3.1	3.89	8	<2	5	4.5		
	WM2B	136.5	>999.0	77.1	175	135	934	75	138.5		
Exceedance		Limit Level Limit Level									
	on Results, dations & Measures	 According to the site information provided from the CCKJV, construction activities carried out on 22, 23, 25, 26 April 2016 at North Portal (upstream of WM2B) were bored piling and slope work. Also, construction of site access road along with a temporary drain ditch were carried out. The monitoring locations and works area are shown in Figure 1. According to the site photos from the monitoring team from 22, 23, 25, 26 April 2016, it was observed that the water samples collected at WM2B-C were clear. (Photo 1 to 8) According to the Daily Extract of Meteorological Observations from the Hong Kong Observatory, heavy rainfall was recorded on 22 and 25 April 2016. (Figure 2 & 3) Along the construction of the site access road and temporary drain ditch, runoff was generated from loose surface under heavy rain. (Photo 9 and Photo 10) Thus, it is considered that the exceedances were related to runoff from the loose surface. According to the site monitoring figures, there was no exceedances triggered on 27 April after the completion of the ditch. It is considered that the ditch had effectively collected the runoff due to the heavy rain. Also, from the site photos (Photo 11) and during joint site inspection with RE, IEC, ET and Contractor on 5 May 2016, no runoff was observed after the completion of the drain ditch. (Photo 12) According to the Event and Action, the monitoring frequency at WM2B has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. Additional monitoring was carried out and no exceedance was triggered on 27 and 28 April 2016. Nevertheless, in order to minimize the muddy runoff from the loose surface into river channel, it is advised that CCKJV should provide sand bags as temporary bund along the bank of the river. 									

Prepared By:	Winnie Chiu

Designation:	Assistant Environmental Consultant	
Signature :	Chin	
Date:	27 May 2016	

Photo 1During water sampling on 22 April 2016, it was observed that the water at WM2B was turbid.

Photo 2The water samples collected at WM2B on 22
April 2016 was turbid comparing to the water samples collected at WM2B-C.

Photo 3 During water sampling on 23 April 2016, it was observed that the water at WM2B was turbid.

Photo 4
The water samples collected at WM2B on 23
April 2016 was turbid comparing to the water samples collected at WM2B-C.

Photo 5
During water sampling on 25 April 2016, it was observed that the water at WM2B was turbid.

Photo 6The water samples collected at WM2B on 25 April 2016 was turbid comparing to the water samples collected at WM2B-C.

Photo 7During water sampling on 26 April 2016, it was observed that the water at WM2B was turbid.

Photo 8The water samples collected at WM2B on 26 April 2016 was turbid comparing to the water samples collected at WM2B-C.

Photo 9Runoff due to the heavy rain was generated from the loose surface where the temporary drain ditch has not been fully constructed yet, into the river channel.

Photo 10 Temporary drain ditch was constructed to collect runoff.

Photo 11 No runoff was observed after the completion of the temporary drain ditch.

Photo 12
During site investigation on 5 May 2016, no runoff was observed after the completion of the temporary drain ditch.

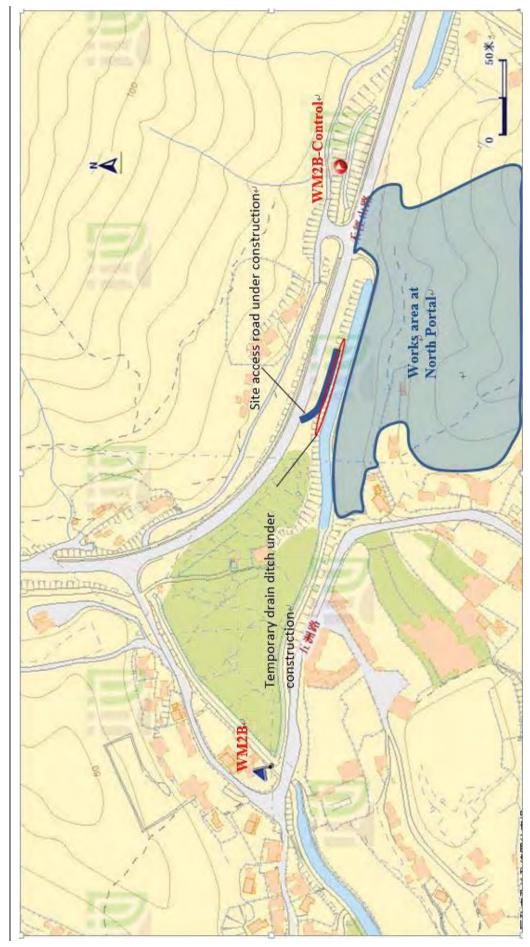


Figure 1: Location map of WM2B, WM2B-Control, work area, temporary drain ditch and site access road

2016年4月25日等兩量線圖

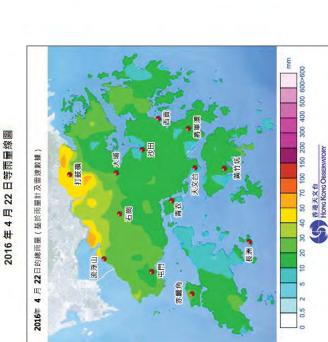


Figure 2 Rainfall distribution on 22 April 2016

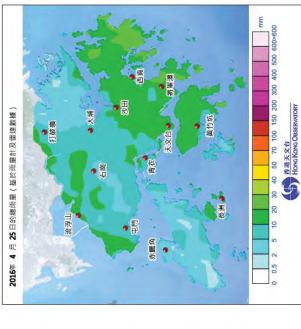


Figure 3 Rainfall distribution on 25 April 2016